Award Ceremony Date: September 2-3, 2024
Location: Departamento de Matematicas, CINVESTAV & Main Hall of El Colegio Nacional
For further inquiries, please visit the AMC website.
For the poster, click here.
Para el cartel, haga clic aquí.
The Mexican Academy of Sciences (AMC) and the Institute of Mathematical Sciences of the Americas (IMSA) at the University of Miami, supported by the Simons Foundation and the Mexican Mathematical Society, are proud to announce the Jose Adem Prize for Mathematical Research in Mexico. This prestigious award aims to recognize and honoroutstanding mathematicians based in Mexico, who have demonstrated remarkable contributions to the field of mathematics.
La Academia Mexicana de Ciencias (AMC) y el Instituto de Ciencias Matemáticas de las Américas (IMSA) de la Universidad de Miami, apoyados por la Fundación Simons y la Sociedad Matemática Mexicana, convocan al Premio José Adem para la Investigación Matemática en México. Este premio reconoce a las matemáticas y los matemáticos destacados residentes en México que hayan hecho aportaciones significativas al campo de las matemáticas.
Schedule
Monday, September 2 2024, El Palacio de Autonomía
10:00am |
Isabel Hubard, IMATE UNAM: Chirality in Abstract Polytopes: insights from Symmetric and Alternating Groups
In this talk, we explore the intriguing world of chiral abstract polytopes, focusing on a family constructed from symmetric and alternating groups. We begin by introducing the concepts of chirality and abstract polytopes. Abstract polytopes generalize the notion of polytopes beyond the familiar geometric figures, allowing for a broader and more flexible mathematical framework. Highly symmetric examples include not only classical regular polytopes such as regular convex polytopes, but also non-degenerate regular maps on surfaces (such as Klein's quartic, of genus 3). Chirality, on the other hand, refers to the lack of "superimposability" of an object with its mirror image. Chiral (abstract) polytopes are those having maximal degree of symmetry, but without any mirror symmetries. The motivation behind studying these structures arises from their deep connections to group theory and symmetry, offering insights into the interplay between algebraic and geometric properties. By focusing on symmetric and alternating groups, we uncover how these well-known groups serve as fertile ground for constructing chiral polytopes. This talk aims to provide both an introduction to the subject and a glimpse into current research in this area.
|
11:15am |
Ludmil Katzarkov, University of Miami: Theory of Atoms
We will use the theory of atoms to consider questions in birrational geometry.
|
3:00pm |
Yuri Tschinkel, Courant Institute for Mathematical Sciences
|
4:30pm |
Phillip Griffiths, Institute for Advanced Study, Princeton: Hodge theory: What is it? How can it be used in algebraic geometry?
Hodge theory is a central part of modern algebraic geometry. In this talk, intended for a general mathematical audience, we will first trace the origins of Hodge theory in complex analysis. Then after a brief summary of its standard uses in the topology of algebraic varieties, we will illustrate several specific applications of Hodge theory to geometric questions. The perspective will be analytic and complementary to the more common homological algebraic one.
|
Tuesday, September 3, 2024 Room 131, Dept of Mathematics, Cinvestav-IPN
Topic: “Outstanding Young Latin American Mathematicians 2024”
10:00am |
Enrique Becerra, IMSA Miami: The stringy spectrum of orbifolds
The stringy spectrum is an additive invariant of complex algebraic orbifolds inspired in the classical notion of the spectrum of an isolated hypersurface singularity. In this talk, I will explain the basic ideas involved in the construction of this invariant. This is joint work with E. Lupercio and L. Katzarkov.
|
11:00am |
Leonardo Cavenaghi, IMSA Miami: Concrete models for atoms and a Chen-Ruan toy model
In recent years, built upon mirror symmetry reasoning, Katzarkov, Kontsevich, Pantev, and Yu have developed the theory of Atoms as an ``A side and ``B side'' patching to study birational geometry. The main revolution comes from applying Gromov-Witten invariants to birational geometry problems. On the other hand, recent developments (in the works of Tschinkel and Kresch) led to the concept of birational maps and rationality equivalence for stacks. Moreover, a cohomology theory based on Gromov-Witten invariants properly captures the cohomological aspects of Deligne-Mumford stacks. In the orbifold case, this is known as Chen-Ruan cohomology. In this talk, we briefly outline the reasoning of atoms and explain how this can be extended to stacks via some toy models. This theory, among other questions, aims to relate birational geometry invariants with differential topology ones via understanding stacks as moduli spaces for smooth structures on some homotopy spheres. These considerations are part of an ongoing collaboration with L.Grama, L. Katzarkov, and M. Kontsevich.
|
12:00pm |
Jaqueline Mesquita, Universidad de Brasilia
|
2:30pm |
Luis Núñez Betancourt, CIMAT: Singularities and Differential Operators
The Nash blowup is a method introduced to resolve varieties by replacing singular points with limits of tangent spaces. This modification has been studied for over 50 years, mostly in characteristic zero, due to an example given by Nobile in 1975 that discouraged its study in prime characteristic. In this talk, we will discuss recent tools for studying singularities via differential operators, which show that the Nash blowup is a significant modification for normal varieties. This talk is based on joint works with Brenner, Duarte, and Jeffries.
|
3:30pm |
Agustín Romano, IMATE UNAM Cuernavaca: Maximal Cohen-Macaulay modules over normal surface singularities.
The study of maximal Cohen-Macaulay (MCM) modules over normal surface singularities goes back to Arnold in 1976 and McKay in 1979. The original problem arises as a way to understand a common origin of all the A-D-E classification theorems. In this talk, we will do a fast review of the McKay correspondence, then we will discuss several generalizations of this correspondence and properties between MCM modules and the topological and analytical invariants of the singularity.
|
4:30pm |
Alfredo Nájera, IMATE UNAM Oaxaca: Toric geometry vs. Cluster geometry
In this talk I will explain how some of the main constructions of toric geometry can be generalized to study minimal models of cluster varieties.
|
Award Overview
The Jose Adem Prize will be awarded biennially, with the inaugural prize to be awarded in 2024. This recognition is expected to spotlight a single awardee every two years, celebrating their exceptional contributions to mathematics. The recipient will receive a monetary award of $5,000 USD, courtesy of the Simons Foundation, alongside a certificate of recognition and a medal. The award ceremony will take place in Mexico in either September or October of 2024, where the awardee will also be invited to IMSA, Miami, to deliver an invited lecture.
Descripción General del Premio
El Premio José Adem se otorgará bianualmente, comenzando en 2024. En cada edición se reconocerá a una sola persona galardonada, quien recibirá un premio monetario de 5,000 dólares estadounidenses, proporcionado por la Fundación Simons, una medalla y un certificado de reconocimiento por su destacada contribución a las matemáticas. La ceremonia de premiación se llevará a cabo en México en septiembre de 2024, y la persona ganadora será invitada a impartir una conferencia en el IMSA en Miami.
Eligibility Criteria
Eligible candidates are mathematicians working in Mexico who are below the age of 45 for women and 43 for men at the time of nomination. Their work should reflect outstanding contributions made in Mexico during the last five years, at least.
Criterios de Elegibilidad
Las candidatas y los candidatos elegibles deben ser matemáticas y matemáticos que trabajen en México y que, al momento de la nominación, tengan menos de 45 años si son mujeres y menos de 43 años si son hombres. Se considerarán las contribuciones matemáticas sobresalientes realizadas en México durante al menos los últimos cinco años.
Nomination Process
We extend an invitation to professors at universities and research centers worldwide to submit nominations. The nomination package should include:
1. A letter of acceptance from the nominee.
2. A comprehensive two-page Curriculum Vitae (CV), highlighting the nominee’s academic background, professional experience, research contributions, and honors/awards received. The CV should also emphasize the five best publications of the candidate.
3. A document of at most seven pages describing the nominee’s work and its significance within the field. This document should detail the key mathematical contributions and their impact.
4. At least two letters of recommendation.
Proceso de Nominación
Invitamos a las profesoras y los profesores de universidades y centros de investigación de todo el mundo a nominar a candidatas y candidatos. Las nominaciones deberán presentarse electrónicamente antes del 15 de junio de 2024. El paquete de nominación debe incluir:
1. Carta de aceptación de la candidata o del candidato.
2. Curriculum Vitae de dos páginas destacando la trayectoria académica, experiencia profesional, contribuciones a la investigación y honores o premios recibidos. Deberá resaltar las cinco publicaciones más destacadas de la candidata o del candidato.
3. Un documento de un máximo de siete páginas que describa el trabajo de la candidata o del candidato y su importancia dentro del campo de especialización. Este documento debe detallar las contribuciones matemáticas claves y su impacto.
4. Al menos dos cartas de recomendación.
Selection Process
The Scientific Committee, comprising five eminent mathematicians with a focus on diverse areas of research and gender equilibrium, will evaluate all nominations. The committee will ensure a rigorous and fair selection process, basing their decisions on the mathematical significance, impact, and quality of the nominees’ work.
Proceso de Selección
Un Comité Científico compuesto por cinco distinguidas matemáticas y distinguidos matemáticos, con un enfoque en diversas áreas de investigación y equilibrio de género, evaluará todas las candidaturas. El proceso de selección será riguroso y justo, basando sus decisiones en la significancia, impacto y calidad de la investigación matemática presentada.
Important Dates
Call for Nominations Opens: April 15, 2024
Nomination Deadline: June 15, 2024
Winner Annoucement: August 15, 2024
Calendario
Apertura de la convocatoria: 15 de abril de 2024.
Fecha límite para nominaciones: 15 de junio de 2024.
Anuncio del resultado: 15 de agosto de 2024.
We look forward to receiving your nominations and celebrating the mathematical achievements within our community.