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Symplectic topology

Let w =Y, dg; A dp; € Q?(R?").

Question 1
Given X1, Xo C R?", does there exist a diffeomorphism
@ : X1 — Xo such that

prw=w?

2
{qf+p%<1}g{zg+a2p§<1}c1@2, for all a > 0.

Question 2
Given X1, Xo C R?", does there exist an embedding p: X1 = Xo
such that ¢*w = w?
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Symplectic embeddings

Ww'=wA---Aw=nldgs Adpy A --- A dgn A dpp.

n

If *w = w, then p*(w") = wW".
Let

B2"(r) = {(
z2(r) = {(

) € R* | |g|* + |pf* < r?}

q,p
q,p) €R?™ | ¢ + p? < r?} = B?(r) x R*"2,
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Gromov’s nonsqueezing theorem, 1985
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w = qu,— A dp;.
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Symplectic capacities

Definition
A symplectic capacity is a function ¢ : P(R?") — [0, +o0]
satisfying
> c(rX) = r?¢(X) for all r >0,
> X < X = c(X1) < ¢(X2),
» ¢(B2"(r)) > 0 and c(Z?"(r)) < cc.
c is said to be normalized if

c(B>(r)) = c(Z"(r)) = wr*.

The existence of a normalized symplectic capacity is equivalent to
Gromov's nonsqueezing theorem.
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Symplectic capacities

The simplest capacities are

cer(X) = sup{nr? | B*(r) < X} (Gromov width),
cz(X) = inf{nr? | X < Z2"(r)}  (cylindrical capacity).

It is easy to check that if ¢ is a normalized capacity, then
cer(X) < ¢(X) < cz(X).

Other examples of normalized capacities:
> First Ekeland-Hofer capacity ¢ (1989),
» Hofer-Zehnder capacity cyz (1994),
» Floer-Hofer capacity csy (1994),
» First contact homology capacity c1CH (Gutt-Hutchings 2018),
» First embedded contact homology capacity ClECH (Hutchings
2011) - only in dimension 4.
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The Viterbo conjecture

Exercise
For any compact set X,

CG,(X)"

n!

< vol(X).

Idea: If c,(X) = 7r2, then (1 — €)B2(r) < X.
So vol((1 — €)B27(r)) < vol(X).
Conjecture (Viterbo)

If X C R?" is a compact and convex set and ¢ is a normalized
symplectic capacity, then

C(I)f!)n < vol(X).

Moreover equality holds if, and only if, X is symplectomorphic to a
ball.
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Minimal action

If X is a compact and convex set of R2" with smooth boundary, let
Amin(X) denote the shortest period of a Reeb orbit on 0.X.

Theorem (EH, HZ, Abbondandolo—Kang, Irie)
If X is a compact and convex set with smooth boundary, then

ct(X) = crz(X) = csu(X) = cf(X) = Amin(X).

Weak Viterbo conjecture
If X is a compact and convex set of R?” with smooth boundary,

then
Amin(X)n

o < vol(X).

Strong Viterbo conjecture
All normalized capacities coincide on convex sets.
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The Mahler conjecture

Let K C R" be a symmetric, compact and convex set. Its polar
body K° is defined by

Ke={xeR"|x-y<1lforall y e K}.

Examples:
> BI(1)° = B2(1), where %+ % =1,
> K polytope, K° dual polytope

If A€ GL,(R), then
(AK)?> = (A H)TK.

In particular M(K) = vol(K) - vol(K®) is preserved.
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The Mahler conjecture

Theorem (Blaschke 1917, Santalé 1949)

M(K) attains its maximum precisely when K is an ellipsoid, i.e.

vol(K) - vol(K°) < vol(B3(1)).

Theorem (Mahler 1938)

For n =2, M(K) attains its minimum precisely when K is a
parallelogram.

Conjecture (Mahler 1939)
For each n, M(K) attains its minimum when K is a hypercube.
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The Mabhler conjecture
Conjecture (Mahler 1939)

M(K) = vol(K) - vol(K°) > %

Theorem (Bourgain—Milman 1987)

Cn

M(K) > —, for some ¢ > 0.

n!

Theorem (Greg Kuperberg 2008)

"
M(K) > R
Theorem (lriyeh—Shibata 2020)

The Mahler conjecture holds for n = 3.
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Hanner polytopes

The Hanner polytopes are the elements of the set generated by an
interval [—1, 1] and the operations x and °.

If K C R" is a Hanner polytope, then

M(K) = %

Conjecture
M(K) is minimized precisely by the Hanner polytopes.
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Mabhler’s conjecture

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in
R". Then

4n
vol(K) - vol(K®) > -
n!
Moreover, equality is attained if, and only if, K is a Hanner
polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.

Strong Viterbo = Viterbo = Weak Viterbo = Mahler
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Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let K C R" be a symmetric compact convex set. Then

Amin(K x K°) = 4.

N
N

47 - w < vol(K x K°) = vol(K) - vol(K°).
n: n:
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Symplectic balls in disguise

Proposition

The product /" x (I")° = B, x By satisfies the equality in
Viterbo's conjecture.

More generally, if K is a Hanner polytope, K x K° always does.

Theorem (R.— Sepe, 2019)
1" x (I")° is symplectomorphic to a ball.

Conjecture
For any Hanner polytope, K x K° is symplectomorphic to a ball.

Proposition
The product A x O satisfies the equality in Viterbo's conjecture.
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Symplectic balls in disguise

S" = {qeR"+1|Zq,—:O, gi — it < 1 for all i},

1

R" = {peR"H | Zp,-:O, max p; — min p; < 1}.
- i i

1

Remark
S2=Aand R?2=0.

Theorem (Ostrover—R.-Sepe 2023)
S" x R" is symplectomorphic to a ball.
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The Toda lattice

n+1 n+1

H(a,p) 2Zp, +Ze"' s

Flaschka coordinates:
— o3(gi—aqi+1) —
aj = e2 s b,' = —Pp;.

Hamiltonian system:

1 2 2
H(a, b) = EZb,- +Za,
i=1 i=1
bl = 312 —di-1
1
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Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system

above is equivalent to L = [L, B],

b1 ai 0 ... an+1
al b2 dy ... 0

L = 0 a bz ... 0
an+1 0 0 bn—l—l

Theorem (Toda)
The spectrum of L is invariant under the flow.
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Toric domains

Definition

A toric domain Xq C C" is a set of the form Xq = u~1(R), where

Q2 C RZ, is an open set and

pw:C"—=R" u(z,...

Example (Cylinder)

7| 22]?

5 7|z1|?

Z(a) = {(z1,22) € C*|m|z1|* < a}

,2,) = (7|zi)?, ..., 7| za)?)
Example (Ellipsoid)

7| z2[?

b

> m|z1|?

2 2
E(a,b) := {(zl,Z2) ec?|mal y mal <4
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Monotone toric domains

Definition
A toric domain Xq C R?" is called monotone if for each point
p € 9\ {x; =0, for some i}, the normal vector v = (v1,...,vp)

satifies v; > 0 for every i.

Theorem (Gutt—Hutchings—R. 2020)

For a monotone toric domain Xq C R* all symplectic capacities
coincide.

Theorem (Gutt—Hutchings—R. 2020)
For a monotone toric domain Xq C R?",

car(Xa) = £ (Xa).
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The Arnold-Liouville theorem

Fix (M?",w) and let F = (H1,...,H,) : M — R" such that
{Hi, Hj} =0 for all i,j.

> If c € R is a regular value of F and F~(c) is compact and
connected, then F~1(c) = T".

» Let U be an open set such that F(U) is simply-connected and
does not contain critical values. Then there exists a
diffeomorphism ¢ : F(U) — Q and a symplectomorphism
® : U — Xgq such that the following diagram commutes.

U -2 - Xq

b

F(U) — Q
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Action-angle coordinates

There is a difference equation related to L:

ak—1Yk—1(A) + byi(A) + akyi+1(A) = Ay (A).
We can associate to it a discriminant A(\).

Theorem (Flaschka—McLaughlin, van Moerbeke, Moser)

Let A1 < Mo < -+ < Aonyo be the roots of A()\)? — 4.

Then the action coordinates ¢ = (I1,. .., I,) are given by

AN

A2it1
li=(n+ 1)/ cosh™?
A

2i

d,

and they induce a symplectomorphism

®: {(q,p) RN ai=) pi 20} — R?".
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A deformation of the Toda lattice

For ¢ > 0, let

1 n+1 n+1
He(a,p) =5 pf +e ) e@am),
i=1 i=1

As ¢ — o0, the potential converges to
0,if g —qiy1 <1, foralli=1,...,n,
o0, if g; — giy1 > 1, forsome i=1,...,n.
The flow of Xy, converges to the billiard flow in

{qeR" | qgi—qgix1 <1, foralli=1,... n}.
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The symplectomorphism

Theorem (Ostrover—R.—Sepe)

8" x {>_; pi = 0} admits a toric action whose moment map is
given by

S"x{) pi=0} - R

(a,p) = (n+1)(Ps(1) = Po(2)s - -+ » Po(n) = Po(n+1))s
where py(1) 2 Ps(2) = 2 Po(ntl)-

Corollary
The ball is symplectomorphic to S" x R".
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Open questions

Question 1

For which polytopes P is the product A" x P symplectomorphic to
a ball?

T8O

Figure: The Fedorov polyhedra

Question 2
Do other root systems B, C,, D,,, G, etc, give rise to interesting
symplectomorphisms?
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Toric domains in disguise
Specific examples:

» The Lagrangian bidisk D? x D? c R* is symplectomorphic to
a concave toric domain. (R. 2017)

» The LP sum of two disks is symplectomorphic to a toric
domain. (Ostrover— R. 2020)

» The unit disk bundles D*S2 and D*(52 \ {x}) are
symplectomorphic to B(27) and P (2, 27), respectively.
(Ferreira— R. 2021)

> D*(E2(1,1,a) \ {(0,0,a)}) is symplectomorphic to a toric
domain. (Ferreira—R.—Vicente, 2023)

Large classes of examples:

» The Lagrangian product of the hypercube /" and a symmetric
region in R?" is symplectomorphic to a toric domain. (R.—
Sepe, 2019)

» The Lagrangian product of a simplex §” and a
region in R" is symplectomorphic to a toric domain.
(Ostrover— R.— Sepe, 2023)



