The Toda lattice, billiards and symplectic geometry

Vinicius G. B. Ramos

IMPA (Rio de Janeiro) and IAS (Princeton)

Let
$$\omega = \sum_i dq_i \wedge dp_i \in \Omega^2(\mathbb{R}^{2n}).$$

Let
$$\omega = \sum_i dq_i \wedge dp_i \in \Omega^2(\mathbb{R}^{2n}).$$

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism $\varphi: X_1 \to X_2$ such that

$$\varphi^*\omega = \omega?$$

Let
$$\omega = \sum_i dq_i \wedge dp_i \in \Omega^2(\mathbb{R}^{2n}).$$

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism $\varphi: X_1 \to X_2$ such that

$$\varphi^*\omega = \omega?$$

$$\left\{ q_1^2 + p_1^2 < 1 \right\} \cong \left\{ rac{q_1^2}{a^2} + a^2 p_1^2 < 1
ight\} \subset \mathbb{R}^2, \quad ext{for all } a > 0.$$

Let
$$\omega = \sum_i dq_i \wedge dp_i \in \Omega^2(\mathbb{R}^{2n}).$$

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism $\varphi: X_1 \to X_2$ such that

$$\varphi^*\omega = \omega?$$

$$\left\{ q_1^2 + p_1^2 < 1 \right\} \cong \left\{ rac{q_1^2}{a^2} + a^2 p_1^2 < 1
ight\} \subset \mathbb{R}^2, \quad ext{for all } a > 0.$$

Question 2

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist an embedding $\varphi : X_1 \hookrightarrow X_2$ such that $\varphi^* \omega = \omega$?

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If $\varphi^*\omega = \omega$, then $\varphi^*(\omega^n) = \omega^n$.

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega = \omega$$
, then $\varphi^*(\omega^n) = \omega^n$.
Let

$$B^{2n}(r) = \{(q, p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If $\varphi^* \omega = \omega$, then $\varphi^*(\omega^n) = \omega^n$. Let

$$egin{split} B^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}\ Z^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\} \end{split}$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

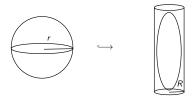
If $\varphi^* \omega = \omega$, then $\varphi^*(\omega^n) = \omega^n$. Let

$$egin{aligned} B^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}\ Z^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\} = B^2(r) imes \mathbb{R}^{2n-2}. \end{aligned}$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If $\varphi^* \omega = \omega$, then $\varphi^*(\omega^n) = \omega^n$. Let

$$egin{aligned} B^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}\ Z^{2n}(r) &= \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\} = B^2(r) imes \mathbb{R}^{2n-2}. \end{aligned}$$

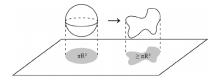


Gromov's nonsqueezing theorem, 1985

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

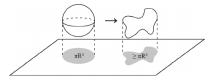
Gromov's nonsqueezing theorem, 1985

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$



Gromov's nonsqueezing theorem, 1985

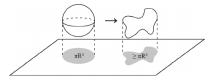
$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$



$$B^{2n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2n}(\varepsilon) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + q_2^2 < \varepsilon^2\}, \qquad \forall r, \varepsilon > 0.$$

Gromov's nonsqueezing theorem, 1985

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$



 $B^{2n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2n}(\varepsilon) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + q_2^2 < \varepsilon^2\}, \qquad \forall r, \varepsilon > 0.$

$$\omega = \sum_i dq_i \wedge dp_i.$$

Definition

Definition

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,

Definition

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,

$$\blacktriangleright X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$$

Definition

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,

$$\blacktriangleright X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$$

•
$$c(B^{2n}(r)) > 0$$
 and $c(Z^{2n}(r)) < \infty$.

Definition

A symplectic capacity is a function $c: \mathcal{P}(\mathbb{R}^{2n}) \to [0, +\infty]$ satisfying

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,

$$\blacktriangleright X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$$

•
$$c(B^{2n}(r)) > 0$$
 and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

Definition

A symplectic capacity is a function $c: \mathcal{P}(\mathbb{R}^{2n}) \to [0, +\infty]$ satisfying

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,
• $X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \le c(X_2)$,
• $c(B^{2n}(r)) > 0$ and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

$$c(B^{2n}(r)) = c(Z^{2n}(r)) = \pi r^2.$$

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

•
$$c(rX) = r^2 c(X)$$
 for all $r > 0$,
• $X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \le c(X_2)$,
• $c(B^{2n}(r)) > 0$ and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

$$c(B^{2n}(r)) = c(Z^{2n}(r)) = \pi r^2.$$

The existence of a normalized symplectic capacity is equivalent to Gromov's nonsqueezing theorem.

The simplest capacities are

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}),$$

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

Other examples of normalized capacities:

First Ekeland-Hofer capacity c_1^{EH} (1989),

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- Hofer-Zehnder capacity c_{HZ} (1994),

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- Hofer-Zehnder capacity c_{HZ} (1994),
- ► Floer-Hofer capacity c_{SH} (1994),

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- Hofer-Zehnder capacity c_{HZ} (1994),
- ► Floer-Hofer capacity c_{SH} (1994),
- First contact homology capacity c_1^{CH} (Gutt-Hutchings 2018),

The simplest capacities are

$$\begin{split} c_{Gr}(X) &= \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\} \quad (\text{Gromov width}), \\ c_Z(X) &= \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\} \quad (\text{cylindrical capacity}). \end{split}$$

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_Z(X).$$

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- Hofer-Zehnder capacity c_{HZ} (1994),
- ► Floer-Hofer capacity c_{SH} (1994),
- First contact homology capacity c_1^{CH} (Gutt-Hutchings 2018),
- First embedded contact homology capacity c₁^{ECH} (Hutchings 2011) only in dimension 4.

The Viterbo conjecture

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

The Viterbo conjecture

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \le \operatorname{vol}(X).$$

Idea: If $c_{Gr}(X) = \pi r^2$, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$.

The Viterbo conjecture

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \le \operatorname{vol}(X).$$

Idea: If
$$c_{Gr}(X) = \pi r^2$$
, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}((1 - \epsilon)B^{2n}(r)) \leq \operatorname{vol}(X)$.

The Viterbo conjecture

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \le \operatorname{vol}(X).$$

Idea: If
$$c_{Gr}(X) = \pi r^2$$
, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}((1 - \epsilon)B^{2n}(r)) \leq \operatorname{vol}(X)$.

Conjecture (Viterbo)

If $X \subset \mathbb{R}^{2n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$\frac{c(X)^n}{n!} \le \operatorname{vol}(X).$$

The Viterbo conjecture

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \le \operatorname{vol}(X).$$

Idea: If
$$c_{Gr}(X) = \pi r^2$$
, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}((1 - \epsilon)B^{2n}(r)) \leq \operatorname{vol}(X)$.

Conjecture (Viterbo)

If $X \subset \mathbb{R}^{2n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$\frac{c(X)^n}{n!} \le \operatorname{vol}(X).$$

Moreover equality holds if, and only if, X is symplectomorphic to a ball.

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a Reeb orbit on ∂X .

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a Reeb orbit on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a Reeb orbit on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

Weak Viterbo conjecture

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, then

$$\frac{A_{\min}(X)^n}{n!} \le \operatorname{vol}(X).$$

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a Reeb orbit on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

Weak Viterbo conjecture

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, then

$$\frac{A_{\min}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Strong Viterbo conjecture

All normalized capacities coincide on convex sets.

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set.

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$K^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in K \}.$$

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$K^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in K \}.$$

Examples:

►
$$B_p^n(1)^\circ = B_q^n(1)$$
,

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$K^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in K \}.$$

Examples:

•
$$B_p^n(1)^\circ = B_q^n(1)$$
, where $\frac{1}{p} + \frac{1}{q} = 1$.

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in \mathcal{K} \}.$$

Examples:

• $B_p^n(1)^\circ = B_q^n(1)$, where $\frac{1}{p} + \frac{1}{q} = 1$.

K polytope,

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in \mathcal{K} \}.$$

Examples:

- $B_p^n(1)^\circ = B_q^n(1)$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- K polytope, K° dual polytope

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in \mathcal{K} \}.$$

Examples:

- $B_p^n(1)^\circ = B_q^n(1)$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- K polytope, K° dual polytope

If $A \in GL_n(\mathbb{R})$,

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in \mathcal{K} \}.$$

Examples:

• $B_p^n(1)^\circ = B_q^n(1)$, where $\frac{1}{p} + \frac{1}{q} = 1$. • K polytope, K° dual polytope

If $A \in GL_n(\mathbb{R})$, then

$$(AK)^\circ = (A^{-1})^T K.$$

Let $K \subset \mathbb{R}^n$ be a symmetric, compact and convex set. Its polar body K° is defined by

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } y \in \mathcal{K} \}.$$

Examples:

• $B_p^n(1)^\circ = B_q^n(1)$, where $\frac{1}{p} + \frac{1}{q} = 1$. • K polytope, K° dual polytope

If $A \in GL_n(\mathbb{R})$, then

$$(AK)^\circ = (A^{-1})^T K.$$

In particular $M(K) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ})$ is preserved.

Theorem (Blaschke 1917, Santaló 1949)

M(K) attains its maximum precisely when K is an ellipsoid,

Theorem (Blaschke 1917, Santaló 1949)

M(K) attains its maximum precisely when K is an ellipsoid, i.e.

 $\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \leq \operatorname{vol}(B_2^n(1))^2.$

Theorem (Blaschke 1917, Santaló 1949)

M(K) attains its maximum precisely when K is an ellipsoid, i.e.

 $\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \leq \operatorname{vol}(B_2^n(1))^2.$

Theorem (Mahler 1938)

For n = 2, M(K) attains its minimum precisely when K is a parallelogram.

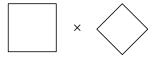
Theorem (Blaschke 1917, Santaló 1949)

M(K) attains its maximum precisely when K is an ellipsoid, i.e.

 $\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \leq \operatorname{vol}(B_2^n(1))^2.$

Theorem (Mahler 1938)

For n = 2, M(K) attains its minimum precisely when K is a parallelogram.



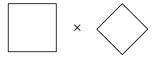
Theorem (Blaschke 1917, Santaló 1949)

M(K) attains its maximum precisely when K is an ellipsoid, i.e.

```
\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \leq \operatorname{vol}(B_2^n(1))^2.
```

Theorem (Mahler 1938)

For n = 2, M(K) attains its minimum precisely when K is a parallelogram.



Conjecture (Mahler 1939)

For each n, M(K) attains its minimum when K is a hypercube.

Conjecture (Mahler 1939)

$$M(K) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}$$

Conjecture (Mahler 1939)

$$M(K) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^\circ) \geq rac{4^n}{n!}.$$

Theorem (Bourgain–Milman 1987)

$$M(K) \geq \frac{c^n}{n!}$$
, for some $c > 0$.

Conjecture (Mahler 1939)

$$M(K) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^\circ) \geq rac{4^n}{n!}.$$

Theorem (Bourgain–Milman 1987)

$$M(K) \geq \frac{c^n}{n!}$$
, for some $c > 0$.

Theorem (Greg Kuperberg 2008)

$$M(K) \geq \frac{\pi^n}{n!}.$$

Conjecture (Mahler 1939)

$$M(K) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}.$$

Theorem (Bourgain–Milman 1987)

$$M(K) \geq \frac{c^n}{n!}$$
, for some $c > 0$.

Theorem (Greg Kuperberg 2008)

$$M(K) \geq \frac{\pi^n}{n!}.$$

Theorem (Iriyeh–Shibata 2020) The Mahler conjecture holds for n = 3.

The Hanner polytopes are the elements of the set generated by an interval [-1,1] and the operations \times and $^\circ.$

The Hanner polytopes are the elements of the set generated by an interval [-1,1] and the operations \times and $^\circ.$

The Hanner polytopes are the elements of the set generated by an interval [-1,1] and the operations \times and $^\circ.$

If $K \subset \mathbb{R}^n$ is a Hanner polytope, then

$$M(K)=\frac{4^n}{n!}.$$

The Hanner polytopes are the elements of the set generated by an interval [-1,1] and the operations \times and $^\circ.$

If $K \subset \mathbb{R}^n$ is a Hanner polytope, then

$$M(K)=\frac{4^n}{n!}.$$

Conjecture

M(K) is minimized precisely by the Hanner polytopes.

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n .

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\mathsf{vol}(\mathcal{K})\cdot\mathsf{vol}(\mathcal{K}^\circ)\geq rac{4^n}{n!}.$$

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\mathsf{vol}(K) \cdot \mathsf{vol}(K^\circ) \geq rac{4^n}{n!}.$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^\circ) \geq \frac{4^n}{n!}.$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014) *The weak Viterbo conjecture implies the Mahler conjecture.*

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\mathsf{vol}(\mathcal{K})\cdot\mathsf{vol}(\mathcal{K}^\circ)\geq rac{4^n}{n!}.$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014) *The weak Viterbo conjecture implies the Mahler conjecture.*

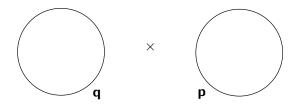
 $\mathsf{Strong}\ \mathsf{Viterbo} \Rightarrow \mathsf{Viterbo} \Rightarrow \mathsf{Weak}\ \mathsf{Viterbo} \Rightarrow \mathsf{Mahler}$

Lagrangian products

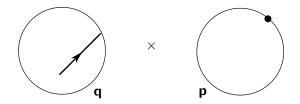
Let
$$K \times T = \{ (\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2n} \mid \mathbf{q} \in K \text{ and } \mathbf{p} \in T \}.$$

$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$

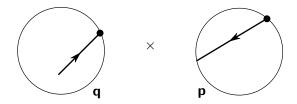
$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$



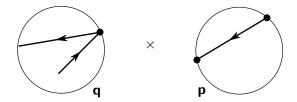
$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$



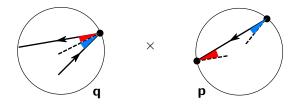
$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$



$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$



$$X_{H} = -J\nabla H = \begin{cases} \sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text{ on } & K \times \partial T \\ -\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text{ on } & \partial K \times T. \end{cases}$$

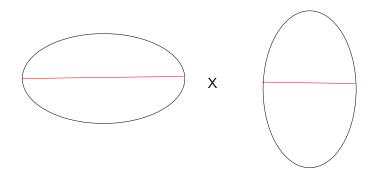


Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

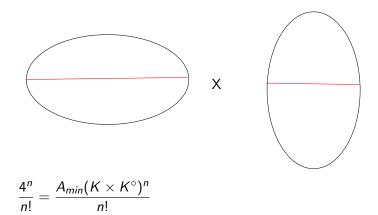
Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014) Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set. Then

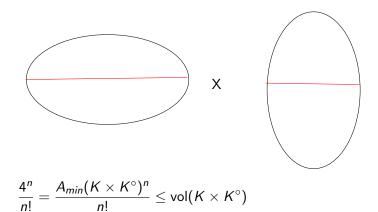
Theorem (Artstein-Avidan, Karasev, Ostrover 2014) Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set. Then



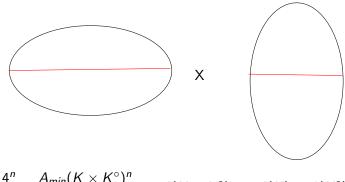
Theorem (Artstein-Avidan, Karasev, Ostrover 2014) Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set. Then



Theorem (Artstein-Avidan, Karasev, Ostrover 2014) Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set. Then



Theorem (Artstein-Avidan, Karasev, Ostrover 2014) Let $K \subset \mathbb{R}^n$ be a symmetric compact convex set. Then



$$\frac{1}{n!} = \frac{M_{\min}(K \wedge K)}{n!} \leq \operatorname{vol}(K \times K^{\circ}) = \operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}).$$

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture.

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture. More generally, if K is a Hanner polytope,

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture.

More generally, if K is a Hanner polytope, $K \times K^{\circ}$ always does.

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture. More generally, if K is a Hanner polytope, $K \times K^\circ$ always does.

Theorem (R.– Sepe, 2019) $l^n \times (l^n)^\circ$ is symplectomorphic to a ball.

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture. More generally, if K is a Hanner polytope, $K \times K^\circ$ always does.

Theorem (R.– Sepe, 2019)

 $I^n \times (I^n)^\circ$ is symplectomorphic to a ball.

Conjecture

For any Hanner polytope, $K \times K^{\circ}$ is symplectomorphic to a ball.

Proposition

The product $I^n \times (I^n)^\circ = B^n_\infty \times B^n_1$ satisfies the equality in Viterbo's conjecture. More generally, if K is a Hanner polytope, $K \times K^\circ$ always does.

Theorem (R.– Sepe, 2019)

 $I^n \times (I^n)^\circ$ is symplectomorphic to a ball.

Conjecture

For any Hanner polytope, $K \times K^{\circ}$ is symplectomorphic to a ball.

Proposition

The product $riangle \times riangle$ satisfies the equality in Viterbo's conjecture.

$$\mathcal{S}^{n} = \left\{ \mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i} = 0, \; q_{i} - q_{i+1} < 1 \; \text{for all} \; \mathrm{i}
ight\},$$

$$\mathcal{S}^n = \left\{ \mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_i q_i = 0, \ q_i - q_{i+1} < 1 \text{ for all } i \right\},$$
$$\mathcal{R}^n = \left\{ \mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_i p_i = 0, \ \max_i p_i - \min_i p_i < 1 \right\}.$$

$$\mathcal{S}^n = \left\{ \mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_i q_i = 0, \ q_i - q_{i+1} < 1 \text{ for all } i \right\},$$
$$\mathcal{R}^n = \left\{ \mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_i p_i = 0, \ \max_i p_i - \min_i p_i < 1 \right\}.$$

Remark

 $\mathcal{S}^2 = \bigtriangleup$ and $\mathcal{R}^2 = \bigcirc$.

$$\mathcal{S}^n = \left\{ \mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_i q_i = 0, \ q_i - q_{i+1} < 1 \text{ for all } i \right\},$$
$$\mathcal{R}^n = \left\{ \mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_i p_i = 0, \ \max_i p_i - \min_i p_i < 1 \right\}.$$

Remark

 $\mathcal{S}^2 = \triangle$ and $\mathcal{R}^2 = \bigcirc$.

Theorem (Ostrover-R.-Sepe 2023)

 $\mathcal{S}^n \times \mathcal{R}^n$ is symplectomorphic to a ball.

$$\mathcal{S}^n = \left\{ \mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_i q_i = 0, \ q_i - q_{i+1} < 1 \text{ for all } i
ight\},$$

 $\mathcal{R}^n = \left\{ \mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_i p_i = 0, \ \max_i p_i - \min_i p_i < 1
ight\}.$

Remark

 $\mathcal{S}^2 = \triangle$ and $\mathcal{R}^2 = \bigcirc$.

Theorem (Ostrover-R.-Sepe 2023)

 $\mathcal{S}^n \times \mathcal{R}^n$ is symplectomorphic to a ball.



$$H(\mathbf{q},\mathbf{p}) = \frac{1}{2} \sum_{i=1}^{n+1} p_i^2 + \sum_{i=1}^{n+1} e^{q_i - q_{i+1}}.$$

$$H(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1}p_i^2 + \sum_{i=1}^{n+1}e^{q_i-q_{i+1}}.$$

Flaschka coordinates:

$$a_i = e^{rac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

$$H(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + \sum_{i=1}^{n+1} e^{q_i - q_{i+1}}.$$

Flaschka coordinates:

$$a_i = e^{rac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

Hamiltonian system:

$$H(a,b) = \frac{1}{2} \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} a_i^2$$

$$H(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + \sum_{i=1}^{n+1} e^{q_i - q_{i+1}}.$$

Flaschka coordinates:

$$a_i = e^{rac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

Hamiltonian system:

$$H(a, b) = \frac{1}{2} \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} a_i^2$$
$$\begin{cases} \dot{b}_i = a_i^2 - a_{i-1}^2\\ \dot{a}_i = \frac{1}{2} a_i (b_{i+1} - b_i). \end{cases}$$

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L} = [L, B]$,

$$L = \begin{pmatrix} b_1 & a_1 & 0 & \dots & a_{n+1} \\ a_1 & b_2 & a_2 & \dots & 0 \\ 0 & a_2 & b_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n+1} & 0 & 0 & \dots & b_{n+1} \end{pmatrix}$$

٠

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L} = [L, B]$,

$$L = \begin{pmatrix} b_1 & a_1 & 0 & \dots & a_{n+1} \\ a_1 & b_2 & a_2 & \dots & 0 \\ 0 & a_2 & b_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n+1} & 0 & 0 & \dots & b_{n+1} \end{pmatrix}$$

٠

Theorem (Toda)

The spectrum of L is invariant under the flow.

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$, where $\Omega \subset \mathbb{R}^n_{\geq 0}$ is an open set and

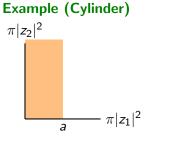
$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \ldots, z_n) = (\pi |z_1|^2, \ldots, \pi |z_n|^2)$$

Toric domains

Definition

A toric domain $\mathbb{X}_{\Omega} \subset \mathbb{C}^n$ is a set of the form $\mathbb{X}_{\Omega} = \mu^{-1}(\Omega)$, where $\Omega \subset \mathbb{R}_{\geq 0}^n$ is an open set and

$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \ldots, z_n) = (\pi |z_1|^2, \ldots, \pi |z_n|^2)$$



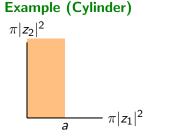
 $Z(a) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \, | \, \pi |z_1|^2 \leq a
ight\}$

Toric domains

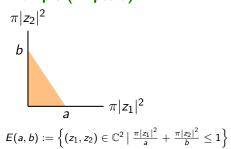
Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$, where $\Omega \subset \mathbb{R}^n_{\geq 0}$ is an open set and

$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \ldots, z_n) = (\pi |z_1|^2, \ldots, \pi |z_n|^2)$$



Example (Ellipsoid)



 $Z(a) := \{(z_1, z_2) \in \mathbb{C}^2 \, | \, \pi |z_1|^2 \le a \}$

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some } i\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every *i*.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some } i\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every *i*.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some } i\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every *i*.

Theorem (Gutt-Hutchings-R. 2020)

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^4$ all symplectic capacities coincide.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some } i\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every *i*.

Theorem (Gutt-Hutchings-R. 2020)

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^4$ all symplectic capacities coincide.

Theorem (Gutt-Hutchings-R. 2020)

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$,

$$c_{Gr}(X_{\Omega})=c_1^{CH}(X_{\Omega}).$$

Fix (M^{2n}, ω) and let $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ such that $\{H_i, H_j\} = 0$ for all i, j.

Fix (M^{2n}, ω) and let $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ such that $\{H_i, H_j\} = 0$ for all i, j.

▶ If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.

Fix (M^{2n}, ω) and let $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ such that $\{H_i, H_j\} = 0$ for all i, j.

- ▶ If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be an open set such that F(U) is simply-connected and does not contain critical values.

Fix (M^{2n}, ω) and let $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ such that $\{H_i, H_j\} = 0$ for all i, j.

- ▶ If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be an open set such that F(U) is simply-connected and does not contain critical values. Then there exists a diffeomorphism φ : F(U) → Ω and a symplectomorphism Φ : U → X_Ω such that the following diagram commutes.

$$\begin{array}{ccc} U & \stackrel{\Phi}{\longrightarrow} & \mathbb{X}_{\Omega} \\ \downarrow_{F} & & \downarrow_{\mu} \\ F(U) & \stackrel{\phi}{\longrightarrow} & \Omega \end{array}$$

F

There is a difference equation related to *L*:

$$a_{k-1}y_{k-1}(\lambda) + b_k y_k(\lambda) + a_k y_{k+1}(\lambda) = \lambda y_k(\lambda).$$

There is a difference equation related to *L*:

$$a_{k-1}y_{k-1}(\lambda) + b_k y_k(\lambda) + a_k y_{k+1}(\lambda) = \lambda y_k(\lambda).$$

We can associate to it a discriminant $\Delta(\lambda)$.

There is a difference equation related to L:

$$a_{k-1}y_{k-1}(\lambda) + b_k y_k(\lambda) + a_k y_{k+1}(\lambda) = \lambda y_k(\lambda).$$

We can associate to it a discriminant $\Delta(\lambda)$.

Theorem (Flaschka–McLaughlin, van Moerbeke, Moser) Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{2n+2}$ be the roots of $\Delta(\lambda)^2 - 4$.

There is a difference equation related to L:

$$a_{k-1}y_{k-1}(\lambda) + b_k y_k(\lambda) + a_k y_{k+1}(\lambda) = \lambda y_k(\lambda).$$

We can associate to it a discriminant $\Delta(\lambda)$.

Theorem (Flaschka–McLaughlin, van Moerbeke, Moser) Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{2n+2}$ be the roots of $\Delta(\lambda)^2 - 4$. Then the action coordinates $\phi = (I_1, \dots, I_n)$ are given by

$$I_i = (n+1) \int_{\lambda_{2i}}^{\lambda_{2i+1}} \cosh^{-1} \left| \frac{\Delta(\lambda)}{2} \right| d\lambda_i$$

There is a difference equation related to L:

$$a_{k-1}y_{k-1}(\lambda) + b_k y_k(\lambda) + a_k y_{k+1}(\lambda) = \lambda y_k(\lambda).$$

We can associate to it a discriminant $\Delta(\lambda)$.

Theorem (Flaschka–McLaughlin, van Moerbeke, Moser) Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{2n+2}$ be the roots of $\Delta(\lambda)^2 - 4$. Then the action coordinates $\phi = (I_1, \dots, I_n)$ are given by

$$I_i = (n+1) \int_{\lambda_{2i}}^{\lambda_{2i+1}} \cosh^{-1} \left| rac{\Delta(\lambda)}{2}
ight| d\lambda,$$

and they induce a symplectomorphism

$$\Phi:\left\{ (\mathbf{q},\mathbf{p})\in \mathbb{R}^{2n+1}\mid \sum_i q_i=\sum_i p_i=0
ight\} \longrightarrow \mathbb{R}^{2n}.$$

For c > 0, let

$$H_c(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + e^{-c}\sum_{i=1}^{n+1} e^{c(q_i-q_{i+1})}.$$

For c > 0, let

$$H_c(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + e^{-c}\sum_{i=1}^{n+1} e^{c(q_i-q_{i+1})}.$$

As $c
ightarrow \infty$, the potential converges to

For c > 0, let

$$H_c(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + e^{-c}\sum_{i=1}^{n+1} e^{c(q_i-q_{i+1})}.$$

As $c
ightarrow \infty$, the potential converges to

$$\left\{\begin{array}{ll} 0, \text{ if } q_i - q_{i+1} < 1, \text{ for all } i = 1, \ldots, n, \end{array}\right.$$

For c > 0, let

$$H_c(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + e^{-c}\sum_{i=1}^{n+1} e^{c(q_i-q_{i+1})}.$$

As $c
ightarrow \infty$, the potential converges to

$$\begin{cases} 0, \text{ if } q_i - q_{i+1} < 1, \text{ for all } i = 1, \dots, n, \\ \infty, \text{ if } q_i - q_{i+1} > 1, \text{ for some } i = 1, \dots, n. \end{cases}$$

For c > 0, let

$$H_c(\mathbf{q},\mathbf{p}) = rac{1}{2}\sum_{i=1}^{n+1} p_i^2 + e^{-c}\sum_{i=1}^{n+1} e^{c(q_i-q_{i+1})}.$$

As $c
ightarrow \infty$, the potential converges to

$$\begin{cases} 0, \text{ if } q_i - q_{i+1} < 1, \text{ for all } i = 1, \dots, n, \\ \infty, \text{ if } q_i - q_{i+1} > 1, \text{ for some } i = 1, \dots, n. \end{cases}$$

The flow of X_{H_c} converges to the billiard flow in

$$\{\mathbf{q}\in\mathbb{R}^n\mid q_i-q_{i+1}<1, \text{ for all } i=1,\ldots,n\}.$$

The symplectomorphism

Theorem (Ostrover-R.-Sepe)

 $\mathcal{S}^n \times \{\sum_i p_i = 0\}$ admits a toric action whose moment map is given by

$$\mathcal{S}^n imes \{\sum_i p_i = 0\} o \mathbb{R}^n_{\geq 0}$$

 $(\mathbf{q}, \mathbf{p}) \mapsto (n+1)(p_{\sigma(1)} - p_{\sigma(2)}, \dots, p_{\sigma(n)} - p_{\sigma(n+1)}),$

The symplectomorphism

Theorem (Ostrover-R.-Sepe)

 $S^n \times \{\sum_i p_i = 0\}$ admits a toric action whose moment map is given by

$$\begin{split} \mathcal{S}^{n} \times \{ \sum_{i} p_{i} = 0 \} \to \mathbb{R}^{n}_{\geq 0} \\ (\mathbf{q}, \mathbf{p}) \mapsto (n+1)(p_{\sigma(1)} - p_{\sigma(2)}, \dots, p_{\sigma(n)} - p_{\sigma(n+1)}), \end{split}$$
where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \dots \geq p_{\sigma(n+1)}.$

The symplectomorphism

Theorem (Ostrover-R.-Sepe)

 $S^n \times \{\sum_i p_i = 0\}$ admits a toric action whose moment map is given by

$$\mathcal{S}^n imes \{\sum_i p_i = 0\} o \mathbb{R}^n_{\geq 0}$$

 $(\mathbf{q}, \mathbf{p}) \mapsto (n+1)(p_{\sigma(1)} - p_{\sigma(2)}, \dots, p_{\sigma(n)} - p_{\sigma(n+1)}),$

where $p_{\sigma(1)} \ge p_{\sigma(2)} \ge \cdots \ge p_{\sigma(n+1)}$.

Corollary

The ball is symplectomorphic to $\mathcal{S}^n \times \mathcal{R}^n$.

Open questions

Question 1

For which polytopes P is the product $\Delta^n \times P$ symplectomorphic to a ball?

Open questions

Question 1

For which polytopes P is the product $\Delta^n \times P$ symplectomorphic to a ball?

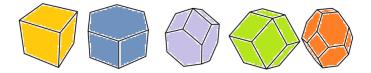


Figure: The Fedorov polyhedra

Open questions

Question 1

For which polytopes P is the product $\Delta^n \times P$ symplectomorphic to a ball?

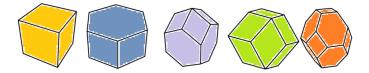


Figure: The Fedorov polyhedra

Question 2

Do other root systems B_n , C_n , D_n , G_2 , etc, give rise to interesting symplectomorphisms?

Specific examples:

The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)

Specific examples:

- The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)

Specific examples:

- The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles D^{*}S²₊ and D^{*}(S² \ {x}) are symplectomorphic to B(2π) and P(2π, 2π), respectively. (Ferreira− R. 2021)

Specific examples:

- The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles D^{*}S²₊ and D^{*}(S² \ {x}) are symplectomorphic to B(2π) and P(2π, 2π), respectively. (Ferreira− R. 2021)
- D*(E²(1,1,a) \ {(0,0,a)}) is symplectomorphic to a toric domain. (Ferreira−R.−Vicente, 2023)

Specific examples:

- The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles D^{*}S²₊ and D^{*}(S² \ {x}) are symplectomorphic to B(2π) and P(2π, 2π), respectively. (Ferreira− R. 2021)
- D*(E²(1,1,a) \ {(0,0,a)}) is symplectomorphic to a toric domain. (Ferreira−R.−Vicente, 2023)

Large classes of examples:

► The Lagrangian product of the hypercube Iⁿ and a symmetric region in ℝ²ⁿ is symplectomorphic to a toric domain. (R.– Sepe, 2019)

Specific examples:

- The Lagrangian bidisk D² × D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles D^{*}S²₊ and D^{*}(S² \ {x}) are symplectomorphic to B(2π) and P(2π, 2π), respectively. (Ferreira− R. 2021)
- D*(E²(1,1,a) \ {(0,0,a)}) is symplectomorphic to a toric domain. (Ferreira−R.−Vicente, 2023)

Large classes of examples:

- ► The Lagrangian product of the hypercube Iⁿ and a symmetric region in ℝ²ⁿ is symplectomorphic to a toric domain. (R.– Sepe, 2019)
- ► The Lagrangian product of a simplex Sⁿ and a symmetric region in ℝⁿ is symplectomorphic to a toric domain. (Ostrover- R.- Sepe, 2023)