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Symplectic topology

Let ω =
∑

i dqi ∧ dpi ∈ Ω2(R2n).

Question 1

Given X1,X2 ⊂ R2n, does there exist a diffeomorphism
φ : X1 → X2 such that

φ∗ω = ω?

{
q21 + p21 < 1

} ∼=
{
q21
a2

+ a2p21 < 1

}
⊂ R2, for all a > 0.

Question 2

Given X1,X2 ⊂ R2n, does there exist an embedding φ : X1 ↪→ X2

such that φ∗ω = ω?
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Symplectic embeddings

ωn = ω ∧ · · · ∧ ω = n! dq1 ∧ dp1 ∧ · · · ∧ dqn ∧ dpn.

If φ∗ω = ω, then φ∗(ωn) = ωn.
Let

B2n(r) = {(q, p) ∈ R2n | |q|2 + |p|2 < r2}
Z 2n(r) = {(q, p) ∈ R2n | q21 + p21 < r2} = B2(r)× R2n−2.

↪−→
r

R
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Nonsqueezing

Gromov’s nonsqueezing theorem, 1985

B2n(r)
s
↪→ Z 2n(R) ⇐⇒ r ≤ R.

B2n(r)
s
↪→ Z̃ 2n(ε) = {(q, p) ∈ R2n | q21 + q22 < ε2}, ∀r , ε > 0.

ω =
∑
i

dqi ∧ dpi .
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Symplectic capacities

Definition
A symplectic capacity is a function c : P(R2n) → [0,+∞]
satisfying

▶ c(rX ) = r2c(X ) for all r > 0,

▶ X1
s
↪→ X2 ⇒ c(X1) ≤ c(X2),

▶ c(B2n(r)) > 0 and c(Z 2n(r)) < ∞.

c is said to be normalized if

c(B2n(r)) = c(Z 2n(r)) = πr2.

The existence of a normalized symplectic capacity is equivalent to
Gromov’s nonsqueezing theorem.
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Symplectic capacities

The simplest capacities are

cGr (X ) = sup{πr2 | B2n(r)
s
↪→ X} (Gromov width),

cZ (X ) = inf{πr2 | X s
↪→ Z 2n(r)} (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

cGr (X ) ≤ c(X ) ≤ cZ (X ).

Other examples of normalized capacities:

▶ First Ekeland-Hofer capacity cEH1 (1989),

▶ Hofer-Zehnder capacity cHZ (1994),

▶ Floer-Hofer capacity cSH (1994),

▶ First contact homology capacity cCH1 (Gutt-Hutchings 2018),

▶ First embedded contact homology capacity cECH1 (Hutchings
2011) - only in dimension 4.
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The Viterbo conjecture

Exercise
For any compact set X ,

cGr (X )n

n!
≤ vol(X ).

Idea: If cGr (X ) = πr2, then (1− ϵ)B2n(r)
s
↪→ X .

So vol((1− ϵ)B2n(r)) ≤ vol(X ).

Conjecture (Viterbo)

If X ⊂ R2n is a compact and convex set and c is a normalized
symplectic capacity, then

c(X )n

n!
≤ vol(X ).

Moreover equality holds if, and only if, X is symplectomorphic to a
ball.
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Minimal action

If X is a compact and convex set of R2n with smooth boundary, let
Amin(X ) denote the shortest period of a Reeb orbit on ∂X .

Theorem (EH, HZ, Abbondandolo–Kang, Irie)

If X is a compact and convex set with smooth boundary, then

cEH1 (X ) = cHZ (X ) = cSH(X ) = cCH1 (X ) = Amin(X ).

Weak Viterbo conjecture

If X is a compact and convex set of R2n with smooth boundary,
then

Amin(X )n

n!
≤ vol(X ).

Strong Viterbo conjecture

All normalized capacities coincide on convex sets.
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The Mahler conjecture

Let K ⊂ Rn be a symmetric, compact and convex set. Its polar
body K ◦ is defined by

K ◦ = {x ∈ Rn | x · y ≤ 1 for all y ∈ K}.

Examples:

▶ Bn
p (1)

◦ = Bn
q (1), where 1

p + 1
q = 1.

▶ K polytope, K ◦ dual polytope

If A ∈ GLn(R), then

(AK )◦ = (A−1)TK .

In particular M(K ) = vol(K ) · vol(K ◦) is preserved.
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The Mahler conjecture
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parallelogram.

Conjecture (Mahler 1939)

For each n, M(K ) attains its minimum when K is a hypercube.
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M(K ) attains its maximum precisely when K is an ellipsoid, i.e.

vol(K ) · vol(K ◦) ≤ vol(Bn
2 (1))

2.

Theorem (Mahler 1938)

For n = 2, M(K ) attains its minimum precisely when K is a
parallelogram.

Conjecture (Mahler 1939)

For each n, M(K ) attains its minimum when K is a hypercube.



The Mahler conjecture

Conjecture (Mahler 1939)

M(K ) = vol(K ) · vol(K ◦) ≥ 4n

n!
.

Theorem (Bourgain–Milman 1987)

M(K ) ≥ cn

n!
, for some c > 0.

Theorem (Greg Kuperberg 2008)

M(K ) ≥ πn

n!
.

Theorem (Iriyeh–Shibata 2020)
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The Mahler conjecture

Conjecture (Mahler 1939)

M(K ) = vol(K ) · vol(K ◦) ≥ 4n

n!
.

Theorem (Bourgain–Milman 1987)

M(K ) ≥ cn

n!
, for some c > 0.

Theorem (Greg Kuperberg 2008)

M(K ) ≥ πn

n!
.

Theorem (Iriyeh–Shibata 2020)

The Mahler conjecture holds for n = 3.



The Mahler conjecture

Conjecture (Mahler 1939)

M(K ) = vol(K ) · vol(K ◦) ≥ 4n

n!
.

Theorem (Bourgain–Milman 1987)

M(K ) ≥ cn

n!
, for some c > 0.

Theorem (Greg Kuperberg 2008)

M(K ) ≥ πn

n!
.

Theorem (Iriyeh–Shibata 2020)

The Mahler conjecture holds for n = 3.



The Mahler conjecture

Conjecture (Mahler 1939)

M(K ) = vol(K ) · vol(K ◦) ≥ 4n

n!
.

Theorem (Bourgain–Milman 1987)

M(K ) ≥ cn

n!
, for some c > 0.

Theorem (Greg Kuperberg 2008)

M(K ) ≥ πn

n!
.

Theorem (Iriyeh–Shibata 2020)

The Mahler conjecture holds for n = 3.



Hanner polytopes
The Hanner polytopes are the elements of the set generated by an
interval [−1, 1] and the operations × and ◦.
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4n

n!
.

Conjecture

M(K ) is minimized precisely by the Hanner polytopes.
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Mahler’s conjecture

Conjecture (Mahler 1939)

Let K be a centrally symmetric, compact and convex set in
Rn.

Then

vol(K ) · vol(K ◦) ≥ 4n

n!
.

Moreover, equality is attained if, and only if, K is a Hanner
polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

The weak Viterbo conjecture implies the Mahler conjecture.

Strong Viterbo ⇒ Viterbo ⇒ Weak Viterbo ⇒ Mahler
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Lagrangian products
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∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Lagrangian products

Let K × T = {(q,p) ∈ R2n | q ∈ K and p ∈ T}. Then
∂(K × T ) = H−1(1), where H = max(∥ · ∥K , ∥ · ∥L).

XH = −J∇H =


∑
i

ν ip
∂

∂qi
on K × ∂T

−
∑
i

ν iq
∂

∂pi
on ∂K × T .

q

×

p



Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

Let K ⊂ Rn be a symmetric compact convex set.

Then

Amin(K × K ◦) = 4.

X

4n

n!
=

Amin(K × K ◦)n

n!
≤ vol(K × K ◦) = vol(K ) · vol(K ◦).
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Symplectic balls in disguise

Proposition

The product I n × (I n)◦ = Bn
∞ × Bn

1 satisfies the equality in
Viterbo’s conjecture.

More generally, if K is a Hanner polytope, K × K ◦ always does.

Theorem (R.– Sepe, 2019)

I n × (I n)◦ is symplectomorphic to a ball.

Conjecture

For any Hanner polytope, K × K ◦ is symplectomorphic to a ball.

Proposition

The product △×7 satisfies the equality in Viterbo’s conjecture.
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Symplectic balls in disguise

Sn =

{
q ∈ Rn+1 |

∑
i

qi = 0, qi − qi+1 < 1 for all i

}
,

Rn =

{
p ∈ Rn+1 |

∑
i

pi = 0, max
i

pi −min
i

pi < 1

}
.

Remark
S2 = △ and R2 =7.

Theorem (Ostrover–R.–Sepe 2023)

Sn ×Rn is symplectomorphic to a ball.
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The Toda lattice

H(q,p) =
1

2

n+1∑
i=1

p2i +
n+1∑
i=1

eqi−qi+1 .

Flaschka coordinates:

ai = e
1
2
(qi−qi+1), bi = −pi .

Hamiltonian system:

H(a, b) =
1

2

n∑
i=1

b2i +
n∑

i=1

a2i

ḃi = a2i − a2i−1

ȧi =
1

2
ai (bi+1 − bi ).
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ȧi =
1

2
ai (bi+1 − bi ).



The Toda lattice

H(q,p) =
1

2

n+1∑
i=1

p2i +
n+1∑
i=1

eqi−qi+1 .

Flaschka coordinates:

ai = e
1
2
(qi−qi+1), bi = −pi .

Hamiltonian system:

H(a, b) =
1

2

n∑
i=1

b2i +
n∑

i=1

a2i
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Lax pair formulation

There exists a Lax pair (L,B) such that the Hamiltonian system
above is equivalent to L̇ = [L,B],

L =


b1 a1 0 . . . an+1

a1 b2 a2 . . . 0
0 a2 b3 . . . 0
...

...
...

. . .
...

an+1 0 0 . . . bn+1

 .

Theorem (Toda)

The spectrum of L is invariant under the flow.
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 .

Theorem (Toda)

The spectrum of L is invariant under the flow.



Toric domains

Definition
A toric domain XΩ ⊂ Cn is a set of the form XΩ = µ−1(Ω), where
Ω ⊂ Rn

≥0 is an open set and

µ : Cn → Rn µ(z1, . . . , zn) = (π|z1|2, . . . , π|zn|2)

Example (Cylinder)

π|z1|2

π|z2|2

a

Z(a) :=
{
(z1, z2) ∈ C2 |π|z1|2 ≤ a

}

Example (Ellipsoid)

π|z1|2

π|z2|2

b

a

E(a, b) :=
{
(z1, z2) ∈ C2

∣∣ π|z1|2
a

+ π|z2|2
b

≤ 1
}
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Monotone toric domains

Definition
A toric domain XΩ ⊂ R2n is called monotone if for each point
p ∈ ∂Ω \ {xi = 0, for some i}, the normal vector ν = (ν1, . . . , νn)
satifies νi ≥ 0 for every i .

Theorem (Gutt–Hutchings–R. 2020)

For a monotone toric domain XΩ ⊂ R4 all symplectic capacities
coincide.

Theorem (Gutt–Hutchings–R. 2020)

For a monotone toric domain XΩ ⊂ R2n,

cGr (XΩ) = cCH1 (XΩ).
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The Arnold-Liouville theorem

Fix (M2n, ω) and let F = (H1, . . . ,Hn) : M → Rn such that
{Hi ,Hj} = 0 for all i , j .

▶ If c ∈ Rn is a regular value of F and F−1(c) is compact and
connected, then F−1(c) ∼= Tn.

▶ Let U be an open set such that F (U) is simply-connected and
does not contain critical values. Then there exists a
diffeomorphism ϕ : F (U) → Ω and a symplectomorphism
Φ : U → XΩ such that the following diagram commutes.

U

F
��

Φ // XΩ

µ

��
F (U)

ϕ // Ω
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Action-angle coordinates
There is a difference equation related to L:

ak−1yk−1(λ) + bkyk(λ) + akyk+1(λ) = λyk(λ).

We can associate to it a discriminant ∆(λ).

Theorem (Flaschka–McLaughlin, van Moerbeke, Moser)

Let λ1 ≤ λ2 ≤ · · · ≤ λ2n+2 be the roots of ∆(λ)2 − 4.
Then the action coordinates ϕ = (I1, . . . , In) are given by

Ii = (n + 1)

∫ λ2i+1

λ2i

cosh−1

∣∣∣∣∣∆(λ)

2

∣∣∣∣∣ dλ,
and they induce a symplectomorphism

Φ :

{
(q,p) ∈ R2n+1 |

∑
i

qi =
∑
i

pi = 0

}
−→ R2n.
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A deformation of the Toda lattice

For c > 0, let

Hc(q,p) =
1

2

n+1∑
i=1

p2i + e−c
n+1∑
i=1

ec(qi−qi+1).

As c → ∞, the potential converges to{
0, if qi − qi+1 < 1, for all i = 1, . . . , n,

∞, if qi − qi+1 > 1, for some i = 1, . . . , n.

The flow of XHc converges to the billiard flow in

{q ∈ Rn | qi − qi+1 < 1, for all i = 1, . . . , n}.
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The symplectomorphism

Theorem (Ostrover–R.–Sepe)

Sn × {
∑

i pi = 0} admits a toric action whose moment map is
given by

Sn × {
∑
i

pi = 0} → Rn
≥0

(q,p) 7→ (n + 1)(pσ(1) − pσ(2), . . . , pσ(n) − pσ(n+1)),

where pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(n+1).

Corollary

The ball is symplectomorphic to Sn ×Rn.
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Open questions

Question 1

For which polytopes P is the product ∆n × P symplectomorphic to
a ball?

Figure: The Fedorov polyhedra

Question 2

Do other root systems Bn,Cn,Dn,G2, etc, give rise to interesting
symplectomorphisms?
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Toric domains in disguise

Specific examples:

▶ The Lagrangian bidisk D2 × D2 ⊂ R4 is symplectomorphic to
a concave toric domain. (R. 2017)

▶ The Lp sum of two disks is symplectomorphic to a toric
domain. (Ostrover– R. 2020)

▶ The unit disk bundles D∗S2
+ and D∗(S2 \ {x}) are

symplectomorphic to B(2π) and P(2π, 2π), respectively.
(Ferreira– R. 2021)

▶ D∗(E2(1, 1, a) \ {(0, 0, a)}) is symplectomorphic to a toric
domain. (Ferreira–R.–Vicente, 2023)

Large classes of examples:

▶ The Lagrangian product of the hypercube I n and a symmetric
region in R2n is symplectomorphic to a toric domain. (R.–
Sepe, 2019)

▶ The Lagrangian product of a simplex Sn and a symmetric
region in Rn is symplectomorphic to a toric domain.
(Ostrover– R.– Sepe, 2023)
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