Ribbon Concordances and Slice Obstructions: experiments and examples

Gauge Theory and Low Dimensional Topology Conference - University of Miami

Sherry Gong

(on work-in-progress, joint with Nathan Dunfield)

Texas A&M University

The goal: Finding concordances

A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0,1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.

The goal: Finding concordances

- A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0,1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.
- ▶ We say that a knot $K \subset S^3$ is slice if it admits a concordance to the unknot.

The goal: Finding concordances

- A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0,1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.
- ▶ We say that a knot $K \subset S^3$ is slice if it admits a concordance to the unknot.
- ▶ Goal: find slice knots and concordances between various knots.

Ribbon concordances and ribbon knots

Consider the concordance embedded in $S^3 \times [0,1]$ in such a way that the projection to [0,1] is a Morse function, so that critical points are maxima, minima, or saddle points.

Ribbon concordances and ribbon knots

Consider the concordance embedded in $S^3 \times [0,1]$ in such a way that the projection to [0,1] is a Morse function, so that critical points are maxima, minima, or saddle points.

We say that a concordance is a ribbon concordance from K_1 to K_2 if there are no local minima. We say that a knot is ribbon if it admits a ribbon concordance to the unknot.

A ribbon disk

Ribbon knots can be thought of as an unlink with some ribbons attached.

► Slice-ribbon conjecture: All slice knots are ribbon.

- Slice-ribbon conjecture: All slice knots are ribbon.
 - Generalized version of this conjecture: each concordance class has a single sink

- Slice-ribbon conjecture: All slice knots are ribbon.
 - Generalized version of this conjecture: each concordance class has a single sink
- ▶ Gordon's conjecture: If there is a ribbon concordance from K_1 to K_2 , does this mean K_2 has smaller volume?

- Slice-ribbon conjecture: All slice knots are ribbon.
 - Generalized version of this conjecture: each concordance class has a single sink
- ▶ Gordon's conjecture: If there is a ribbon concordance from K_1 to K_2 , does this mean K_2 has smaller volume?
 - We generally expect that if there is a ribbon concordance from K_1 to K_2 , then K_2 is simpler than K_1 .
 - ▶ Zemke, 2019: If there is a ribbon concordance from K_1 to K_2 , then the knot Floer homology of K_2 is a direct summand of that of K_1 .
 - Agol, 2022: Ribbon concordance is a partial ordering

► The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients
- ▶ The signature: For a slice knot, the signature vanishes.

- ▶ The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients
- ▶ The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition

- ▶ The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients
- ▶ The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition
- ► The *s* invariant: A concordance invariant that comes from Khovanov-Lee homology

- ▶ The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients
- ▶ The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition
- ► The *s* invariant: A concordance invariant that comes from Khovanov-Lee homology
- au, ϵ , ν : concordance invariants that comes from knot Floer homology

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients
- ▶ The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition
- ► The *s* invariant: A concordance invariant that comes from Khovanov-Lee homology
- au, ϵ , ν : concordance invariants that comes from knot Floer homology
- ➤ Sq¹ invariant for odd Khovanov homology: A refinement of the *s* invariant corresponding to the first Steenrod square on odd Khovanov.

► Take a diagram of a knot *K*

- ► Take a diagram of a knot *K*
- ▶ We can think of a saddle point as the addition of a band.

- ► Take a diagram of a knot *K*
- ▶ We can think of a saddle point as the addition of a band.
- Randomly add k bands that increase the number of components.

- ▶ Take a diagram of a knot K
- We can think of a saddle point as the addition of a band.
- Randomly add k bands that increase the number of components.
- ▶ Check if the result is a link composed of a knot K' along with k unknotted, unlinked components. If so then you have obtained a ribbon concordance from K to K'.

Example of a ribbon disk we found

A longer band

An example where we needed two bands

After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - linking number between components is zero

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - ▶ linking number between components is zero
 - signature is zero

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - linking number between components is zero
 - signature is zero
 - multi-variate Fox-Milnor test

Summary of concordances found

- ▶ Of the 350 million knots of up to 19 crossings, 3.87 million have signature 0 and satisfy the Fox Milnor condition Of these:
 - ▶ 2,218,555 (57.3%) are not slice
 - ▶ 1,632,995 (42.2%) are ribbon
 - ► 17,991 (0.5%) unknown

Summary of concordances found

- ▶ Of the 350 million knots of up to 19 crossings, 3.87 million have signature 0 and satisfy the Fox Milnor condition Of these:
 - 2,218,555 (57.3%) are not slice
 - ► 1,632,995 (42.2%) are ribbon
 - ► 17,991 (0.5%) unknown
- Of the ribbon cobordisms:
 - ▶ 1,249,589 used 1 band
 - 381,703 used 2 bands
 - 1,644 used 3 bands
 - 59 used 4 bands

▶ 1,834,339 directed edges (concordances)

- ▶ 1,834,339 directed edges (concordances)
- ▶ 1,676,905 nodes (knots) with at least one edge (in or out)

- ▶ 1,834,339 directed edges (concordances)
- ▶ 1,676,905 nodes (knots) with at least one edge (in or out)
- ► As an undirected graph, it has 524 connected components (singletons removed)

- ▶ 1,834,339 directed edges (concordances)
- ▶ 1,676,905 nodes (knots) with at least one edge (in or out)
- ► As an undirected graph, it has 524 connected components (singletons removed)
 - ► Each component has a unique sink as a directed graph (The ribbon-slice conjecture is saying that the unknot is the unique sink of the component of slice knots)

- ▶ 1,834,339 directed edges (concordances)
- ▶ 1,676,905 nodes (knots) with at least one edge (in or out)
- ► As an undirected graph, it has 524 connected components (singletons removed)
 - ► Each component has a unique sink as a directed graph (The ribbon-slice conjecture is saying that the unknot is the unique sink of the component of slice knots)
 - ► The largest is the unknot with 1,632,995 nodes. Second largest has K11n34 as the sink and has 1673 nodes.

Summary of obstructions

- ► 56.7% (2,194,701) Herald-Kirk-Livingston
- ► 5.0% (195,069) tau/epsilon/nu
- ▶ 5.0% (195,155) s-invariant (over F_2 or F_3)
- ▶ 6.5% (252,805) *Sq*¹ for odd Khovanov
- ▶ 0.0% (1) The Conway knot isn't slice
- ▶ 1.2% (4,677) Ribbon concordances
- $ightharpoonup Sq^1$ for even homology, and s with rational coefficients did not obstruct anything that others did not obstruct

Owens-Swenton computations for alternating knots

- Owens and Swenton have a method for generating ribbon disks for alternating knots
- Our sample has 203,488 alternating knots; we have ribbon disks for 81,577.
- ► They have ribbon disks for 82,015.
- ► They have 475 knots that we don't. We have 37 knots they don't.

Knots that share a zero surgery

Freedman, Gompf, Morrison and Walker's potential method to find a counter-example to the smooth 4-dimensional Poincaré conjecture: Find K that bounds a disk in $W \setminus B^4$ for a homotopy 4-sphere W, so that it doesn't bound a disk in the standard B^4

Knots that share a zero surgery

Freedman, Gompf, Morrison and Walker's potential method to find a counter-example to the smooth 4-dimensional Poincaré conjecture: Find K that bounds a disk in $W\backslash B^4$ for a homotopy 4-sphere W, so that it doesn't bound a disk in the standard B^4 Manolescu and Piccirillo constructed some potential counter-examples thus: If two knots K and K' share a zero-surgery

$$S_0^3(K) = S_0^3(K')$$

and one of them is slice and the other is not, this can be used to construct the above. (They propose some pairs constructed using RBG links.)

Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings

Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings We found 247,954 pairs, of which about 81k have less than 100 crossings.

Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings

We found 247, 954 pairs, of which about 81k have less than 100 crossings.

26,844 of these had \leq 60 crossings

Knots that share a 0-surgery with a knot of \leq 18 crossings

For those where the larger knot had \leq 60 crossings:

Base slice	other slice	
-1	-1	1639
-1	0	3293
0	-1	11
0	0	180
0	1	59
1	0	2236
1	1	19426

Knots that share a 0-surgery with a knot of \leq 18 crossings

For those where the larger knot had \leq 60 crossings:

Base slice	other slice	
-1	-1	1639
-1	0	3293
0	-1	11
0	0	180
0	1	59
1	0	2236
1	1	19426

(Note there are 70 knots for which we know the status of the *larger* one and not the one in our sample.)

The decrease in complexity is generally confirmed:

The decrease in complexity is generally confirmed:

▶ Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly

The decrease in complexity is generally confirmed:

- ▶ Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly
- ▶ We have not found any ribbon concordances from an alernating knot to a non-alternating knot

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly
- ► We have not found any ribbon concordances from an alernating knot to a non-alternating knot

Ribbon concordances do not preserve rank of \widehat{HFK} of \widehat{Kh} mod 8.

- this seemed true up to 17 crossings, but there are 18 crossing knots that violate this
- recently Kyle Hayden also found ribbon knots that violate 1 mod 4.

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly
- ► We have not found any ribbon concordances from an alernating knot to a non-alternating knot

Ribbon concordances do not preserve rank of \widehat{HFK} of \widehat{Kh} mod 8.

- this seemed true up to 17 crossings, but there are 18 crossing knots that violate this
- recently Kyle Hayden also found ribbon knots that violate 1 mod 4.

Sinks in the directed graph of ribbon concordances

every component we found had a unique sink

Thank you!

Thank you for the invitation and thank you for listening!