Ribbon Concordances and Slice Obstructions: experiments and examples
Gauge Theory and Low Dimensional Topology Conference - University of Miami

Sherry Gong
(on work-in-progress, joint with Nathan Dunfield)

Texas A&M University
The goal: Finding concordances

- A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0, 1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.

We say that a knot $K \subset S^3$ is slice if it admits a concordance to the unknot.

Goal: find slice knots and concordances between various knots.
The goal: Finding concordances

- A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0, 1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.
- We say that a knot $K \subset S^3$ is slice if it admits a concordance to the unknot.
The goal: Finding concordances

▶ A concordance between knots $K_1, K_2 \subset S^3$ is a cylinder $F \subset S^3 \times [0, 1]$ such that its boundary consists of $K_1 \subset S^3 \times 0$ and $K_2 \subset S^3 \times 1$.

▶ We say that a knot $K \subset S^3$ is slice if it admits a concordance to the unknot.

▶ Goal: find slice knots and concordances between various knots.
Ribbon concordances and ribbon knots

Consider the concordance embedded in $S^3 \times [0, 1]$ in such a way that the projection to $[0, 1]$ is a Morse function, so that critical points are maxima, minima, or saddle points.
Ribbon concordances and ribbon knots

- Consider the concordance embedded in $S^3 \times [0, 1]$ in such a way that the projection to $[0, 1]$ is a Morse function, so that critical points are maxima, minima, or saddle points.

- We say that a concordance is a ribbon concordance from K_1 to K_2 if there are no local minima. We say that a knot is ribbon if it admits a ribbon concordance to the unknot.
A ribbon disk

Ribbon knots can be thought of as an unlink with some ribbons attached.
Conjectures about slice and ribbon knots

- Slice-ribbon conjecture: All slice knots are ribbon.
Conjectures about slice and ribbon knots

- Slice-ribbon conjecture: All slice knots are ribbon.
- Generalized version of this conjecture: each concordance class has a single sink
Conjectures about slice and ribbon knots

▶ Slice-ribbon conjecture: All slice knots are ribbon.
 ▶ Generalized version of this conjecture: each concordance class has a single sink
▶ Gordon’s conjecture: If there is a ribbon concordance from K_1 to K_2, does this mean K_2 has smaller volume?
Conjectures about slice and ribbon knots

- **Slice-ribbon conjecture**: All slice knots are ribbon.
 - Generalized version of this conjecture: each concordance class has a single sink

- **Gordon’s conjecture**: If there is a ribbon concordance from K_1 to K_2, does this mean K_2 has smaller volume?
 - We generally expect that if there is a ribbon concordance from K_1 to K_2, then K_2 is simpler than K_1.
 - Zemke, 2019: If there is a ribbon concordance from K_1 to K_2, then the knot Floer homology of K_2 is a direct summand of that of K_1.
 - Agol, 2022: Ribbon concordance is a partial ordering
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.
- The signature: For a slice knot, the signature vanishes.
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.
- The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition.
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.
- The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition.
- The s invariant: A concordance invariant that comes from Khovanov-Lee homology.
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.

- The signature: For a slice knot, the signature vanishes.

- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition.

- The s invariant: A concordance invariant that comes from Khovanov-Lee homology.

- τ, ϵ, ν: Concordance invariants that come from knot Floer homology.
Obstructions to being slice

- The Fox-Milnor condition: The Alexander polynomial of a (topologically) slice knot can be written as $\Delta(t) = f(t)f(t^{-1})$ for a Laurent polynomial f with integer coefficients.
- The signature: For a slice knot, the signature vanishes.
- Herald-Kirk-Livingston: There are twisted Alexander polynomials for p and q and these also have to satisfy a Fox-Milnor condition.
- The s invariant: A concordance invariant that comes from Khovanov-Lee homology.
- τ, ϵ, ν: concordance invariants that come from knot Floer homology.
- Sq^1 invariant for odd Khovanov homology: A refinement of the s invariant corresponding to the first Steenrod square on odd Khovanov.
Method for finding ribbon concordances

▶ Take a diagram of a knot K
Method for finding ribbon concordances

- Take a diagram of a knot K
- We can think of a saddle point as the addition of a band.
Method for finding ribbon concordances

- Take a diagram of a knot K
- We can think of a saddle point as the addition of a band.
- Randomly add k bands that increase the number of components.
Method for finding ribbon concordances

- Take a diagram of a knot K
- We can think of a saddle point as the addition of a band.
- Randomly add k bands that increase the number of components.
- Check if the result is a link composed of a knot K' along with k unknotted, unlinked components. If so then you have obtained a ribbon concordance from K to K'.
Example of a ribbon disk we found
A longer band
An example where we needed two bands
A few optimizations

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
A few optimizations

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - linking number between components is zero
A few optimizations

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - linking number between components is zero
 - signature is zero
A few optimizations

- After each band, we check some invariants of ribbon links, to make sure that what we have is still a ribbon link.
 - linking number between components is zero
 - signature is zero
 - multi-variate Fox-Milnor test
Summary of concordances found

- Of the 350 million knots of up to 19 crossings, 3.87 million have signature 0 and satisfy the Fox Milnor condition.
 - Of these:
 - 2,218,555 (57.3%) are not slice
 - 1,632,995 (42.2%) are ribbon
 - 17,991 (0.5%) unknown
Summary of concordances found

- Of the 350 million knots of up to 19 crossings, 3.87 million have signature 0 and satisfy the Fox Milnor condition. Of these:
 - 2,218,555 (57.3%) are not slice
 - 1,632,995 (42.2%) are ribbon
 - 17,991 (0.5%) unknown

- Of the ribbon cobordisms:
 - 1,249,589 used 1 band
 - 381,703 used 2 bands
 - 1,644 used 3 bands
 - 59 used 4 bands
The ribbon concordance graph

- 1,834,339 directed edges (concordances)
The ribbon concordance graph

- 1,834,339 directed edges (concordances)
- 1,676,905 nodes (knots) with at least one edge (in or out)
The ribbon concordance graph

- 1,834,339 directed edges (concordances)
- 1,676,905 nodes (knots) with at least one edge (in or out)
- As an undirected graph, it has 524 connected components (singleton removed)

Each component has a unique sink as a directed graph. The ribbon-slice conjecture states that the unknot is the unique sink of the component of slice knots.

The largest component is the unknot with 1,632,995 nodes. The second largest has $K_{11}^n_{34}$ as the sink and has 1673 nodes.
The ribbon concordance graph

- 1,834,339 directed edges (concordances)
- 1,676,905 nodes (knots) with at least one edge (in or out)
- As an undirected graph, it has 524 connected components (singletons removed)
 - Each component has a unique sink as a directed graph (The ribbon-slice conjecture is saying that the unknot is the unique sink of the component of slice knots)
The ribbon concordance graph

- 1,834,339 directed edges (concordances)
- 1,676,905 nodes (knots) with at least one edge (in or out)
- As an undirected graph, it has 524 connected components (singletons removed)
 - Each component has a unique sink as a directed graph (The ribbon-slice conjecture is saying that the unknot is the unique sink of the component of slice knots)
 - The largest is the unknot with 1,632,995 nodes. Second largest has K11n34 as the sink and has 1673 nodes.
Summary of obstructions

- 56.7% (2,194,701) Herald-Kirk-Livingston
- 5.0% (195,069) tau/epsilon/nu
- 5.0% (195,155) s-invariant (over F_2 or F_3)
- 6.5% (252,805) Sq^1 for odd Khovanov
- 0.0% (1) The Conway knot isn’t slice
- 1.2% (4,677) Ribbon concordances
- Sq^1 for even homology, and s with rational coefficients did not obstruct anything that others did not obstruct
Owens-Swenton computations for alternating knots

- Owens and Swenton have a method for generating ribbon disks for alternating knots
- Our sample has 203,488 alternating knots; we have ribbon disks for 81,577.
- They have ribbon disks for 82,015.
- They have 475 knots that we don’t. We have 37 knots they don’t.
Knots that share a zero surgery

Freedman, Gompf, Morrison and Walker’s potential method to find a counter-example to the smooth 4-dimensional Poincaré conjecture: Find K that bounds a disk in $W \setminus B^4$ for a homotopy 4-sphere W, so that it doesn't bound a disk in the standard B^4.
Knots that share a zero surgery

Freedman, Gompf, Morrison and Walker’s potential method to find a counter-example to the smooth 4-dimensional Poincaré conjecture: Find K that bounds a disk in $W \setminus B^4$ for a homotopy 4-sphere W, so that it doesn't bound a disk in the standard B^4

Manolescu and Piccirillo constructed some potential counter-examples thus: If two knots K and K' share a zero-surgery

$$S_0^3(K) = S_0^3(K')$$

and one of them is slice and the other is not, this can be used to construct the above. (They propose some pairs constructed using RBG links.)
Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings.
Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings. We found 247,954 pairs, of which about $81k$ have less than 100 crossings.
Finding knots that share a zero surgery

Using Dunfield-Obeidin-Rudd program for identifying knot exteriors, we found knots that shared the same zero surgery with a knot of ≤ 18 crossings.

We found 247,954 pairs, of which about 81k have less than 100 crossings.

26,844 of these had ≤ 60 crossings.
Knots that share a 0-surgery with a knot of ≤ 18 crossings

For those where the larger knot had ≤ 60 crossings:

<table>
<thead>
<tr>
<th>Base slice</th>
<th>other slice</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>1639</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>3293</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2236</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19426</td>
</tr>
</tbody>
</table>
Knots that share a 0-surgery with a knot of ≤ 18 crossings

For those where the larger knot had ≤ 60 crossings:

<table>
<thead>
<tr>
<th>Base slice</th>
<th>other slice</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>1639</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>3293</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2236</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19426</td>
</tr>
</tbody>
</table>

(Note there are 70 knots for which we know the status of the larger one and not the one in our sample.)
Comparison to previously expected behaviour

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of $\hat{\text{HFK}}$ and Khovanov homology quite significantly.
- We have not found any ribbon concordances from an alternating knot to a non-alternating knot.
- Ribbon concordances do not preserve rank of $\hat{\text{HFK}}$ of $\tilde{\text{Kh}}$ mod 8.
- This seemed true up to 17 crossings, but there are 18 crossing knots that violate this.
- Recently, Kyle Hayden also found ribbon knots that violate 1 mod 4.

Sinks in the directed graph of ribbon concordances:

- Every component we found had a unique sink.
Comparison to previously expected behaviour

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly.
Comparison to previously expected behaviour

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly
- We have not found any ribbon concordances from an alternating knot to a non-alternating knot

\[
\text{Ribbon concordances do not preserve rank of } \hat{\text{HFK}} \text{ of } \tilde{\text{Kh}} \text{ mod 8.}
\]

- this seemed true up to 17 crossings, but there are 18 crossing knots that violate this
- recently Kyle Hayden also found ribbon knots that violate 1 mod 4.

Sinks in the directed graph of ribbon concordances

- every component we found had a unique sink
Comparison to previously expected behaviour

The decrease in complexity is generally confirmed:

- Ribbon concordances generally seem to drop volume and ranks of HFK and Khovavov homology quite significantly
- We have not found any ribbon concordances from an alternating knot to a non-alternating knot

Ribbon concordances do not preserve rank of \(\widehat{HFK} \) of \(\widehat{Kh} \) mod 8.
- this seemed true up to 17 crossings, but there are 18 crossing knots that violate this
- recently Kyle Hayden also found ribbon knots that violate 1 mod 4.
Comparison to previously expected behaviour

The decrease in complexity is generally confirmed:

▷ Ribbon concordances generally seem to drop volume and ranks of HFK and Khovanov homology quite significantly

▷ We have not found any ribbon concordances from an alternating knot to a non-alternating knot

Ribbon concordances do not preserve rank of \widehat{HFK} of $\widehat{Kh} \mod 8$.

▷ this seemed true up to 17 crossings, but there are 18 crossing knots that violate this

▷ recently Kyle Hayden also found ribbon knots that violate 1 mod 4.

Sinks in the directed graph of ribbon concordances

▷ every component we found had a unique sink
Thank you!

Thank you for the invitation and thank you for listening!