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Collaborators and references

This talk is based on the following monographs [21, 23] and work in
progress [25]:

Virtual Morse–Bott index, moduli spaces of pairs, and applications to
topology of smooth four-manifolds (with Tom Leness), Memoirs of
the American Mathematical Society, in press, xiv+330 pages,
arXiv:2010.15789

Bia lnicki–Birula theory, Morse–Bott theory, and resolution of
singularities for analytic spaces, xii+189 pages, arXiv:2206.14710

Moduli spaces of semistable pairs over complex projective surfaces
and applications to the Bogomolov-Miyaoka-Yau inequality (with
Tom Leness and Richard Wentworth), in preparation.
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures

Bogomolov–Miyaoka–Yau inequality: theorems and
conjectures

4 / 81



Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau theorem for compact, complex surfaces

We begin by recalling the

Theorem 1.1 (Bogomolov–Miyaoka–Yau inequality for complex surfaces of
general type)

(See Miyaoka [45, Theorem 4] and Yau [65, Theorem 4].) If X is a
compact, complex surface of general type, then

c1(X )2 ≤ 3c2(X ). (1)

Here, c1(X ) and c2(X ) are the Chern classes of the holomorphic tangent
bundle, TX

∼= T 1,0X .

In [45], Miyaoka proved Theorem 1.1 using algebraic geometry.

See Barth, Hulek, Peters, and Van de Ven [7, Section VII.4] for a
simplification of Miyaoka’s proof of Theorem 1.1.

5 / 81



Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau theorem for compact, complex surfaces

Figure 1.1: Geography of minimal complex surfaces of general type (from Gompf
and Stipsicz [34, Section 3.4, Figure 3.3, p. 91]).
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau theorem for compact, complex surfaces

Bogomolov [9] proved a weaker version of (1), namely c1(X )2 ≤ 4c2(X ).

Yau proved (1) in a slightly more restricted setting than Theorem 1.1 as a
consequence of his proof of the Calabi Conjectures.

Simpson [49, p. 871] proved Theorem 1.1 as a corollary of his main
theorem [49, p. 870] on existence of a Hermitian–Einstein connection on a
stable Higgs bundle of rank 3 over X and the following

Theorem 1.2 (Bogomolov–Gieseker inequality)

(See Kobayashi [40, Theorem 4.4.7] or Lübke and Teleman [44, Corollary 2.2.4].)
Let (E , h) be a Hermitian vector bundle over of rank r over a compact, complex
Kähler manifold of dimension n ≥ 2. If (E , h) admits a Hermitian–Einstein
connection, then ∫

X

(
2rc2(E )− (r − 1)c1(E )2

)
∧ ωn−2 ≥ 0. (2)
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau theorem for compact, complex surfaces

According to Bogomolov [9] and Gieseker [31], a version of inequality (2)
holds for any slope semi-stable, torsion-free sheaf over a smooth
complex projective surface (see Huybrechts and Lehn [39, Theorem 3.4.1,
p. 80]).
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau conjecture

For a closed topological four-manifold X , we define

c1(X )2 := 2e(X ) + 3σ(X ) and χh(X ) :=
1

4
(e(X ) + σ(X )),

where e(X ) = 2− 2b1(X ) + b2(X ) and σ(X ) = b+(X )− b−(X ) are the
Euler characteristic and signature of X , respectively.

If QX is the intersection form on H2(X ;Z), then b±(X ) are the dimensions
of the maximal positive and negative subspaces of QX on H2(X ;R).

We call X standard if it is closed, connected, oriented, and smooth with
odd b+(X ) ≥ 3 and b1(X ) = 0.
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau conjecture

Conjecture 1 (Bogomolov–Miyaoka–Yau (BMY) inequality for four-manifolds with
non-zero Seiberg–Witten invariants)

If X is a standard four-manifold of Seiberg–Witten simple type with a non-zero
Seiberg–Witten invariant, then

c1(X )2 ≤ 9χh(X ). (3)

If X obeys the hypotheses of Conjecture 1, then it has an almost complex
structure J and the inequality (3) is equivalent to (1), namely

c1(X )2 ≤ 3c2(X ),

where the Chern classes are those of T 1,0X .

Conjecture 1 is based on Stern [50, Problem 4] (see also Kollár [41]), but
often stated for simply connected, symplectic four-manifolds — see Gompf
and Stipsicz [34, Remark 10.2.16 (c)] or Stern [50, Problem 2].
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Bogomolov–Miyaoka–Yau conjecture

Taubes [55, 56] showed that symplectic four-manifolds have
Seiberg–Witten simple type with non-zero Seiberg–Witten invariants.

Szabó [53] proved existence of four-dimensional, non-symplectic, smooth
manifolds with non-zero Seiberg–Witten invariants.

Conjecture 1 has inspired contructions by topologists of examples to shed
light on inequality (3), including work of Akhmedov, Hughes, and Park
[1, 2, 3], Baldridge, Kirk, and Li [4, 5, 6], Bryan, Donagi, and Stipsicz
[12], Fintushel and Stern [27], Gompf and Mrowka [32, 33], Hamenstädt
[35], Park and Stipsicz [48, 51, 52], I. Smith, Torres [58], and others.

Conjecture 1 holds for all examples that satisfy the hypotheses, but the
BMY inequality (3) can fail for four-manifolds with zero Seiberg–Witten
invariants, such as a connected sum of two or more copies of CP2.

LeBrun [42] proved the BMY inequality (3) for Einstein four-manifolds
with non-zero Seiberg–Witten invariants.
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Anti-self-dual connections and the BMY Conjecture

Conjecture 2 (Existence of ASD connections with small instanton number)

Assume the hypotheses of Conjecture 1 and let E be a complex rank two,
Hermitian vector bundle over X whose associated SO(3) bundle su(E ) has first
Pontrjagin number obeying the basic lower bound,

p1(su(E )) ≥ c1(X )2 − 12χh(X ). (4)

Let g be a Riemannian metric on X that is generic in the sense of Freed and
Uhlenbeck [17, 29]. Then there exists a smooth, projectively g -anti-self-dual
Yang–Mills unitary connection A on E , so the curvature FA ∈ Ω2(u(E )) obeys

(F +
A )0 = 0 ∈ Ω+(X ; su(E )), (5)

where + : ∧2(T ∗X )→ ∧+(T ∗X ) and ( · )0 : u(E )→ su(E ) are orthogonal
projections.

One has c1(X )2 − 12χh(X ) = −e(X ) = −c2(X ) by [34, Section 1.4.1], so
(4) ⇐⇒ the instanton number obeys κ := −1

4 p1(su(E )) ≤ 1
4 e(X ).
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Anti-self-dual connections and the BMY Conjecture

We now explain why Conjecture 2 =⇒ Conjecture 1:

For w ∈ H2(X ;Z) and 4κ ∈ Z, let (E , h) be a rank-2 Hermitian bundle
over X with c1(E ) = w , fixed unitary connection Ad on det E , and

p1(su(E )) = c1(E )2 − 4c2(E ) = −4κ.

The moduli space of projectively anti-self-dual (ASD) connections on E is

Mw
κ (X , g) := {A : (F +

A )0 = 0}/GE .

GE is the group of determinant-one, unitary automorphisms of (E , h).

The expected dimension of Mw
κ (X , g) is given by [17]

exp dimMw
κ (X , g) = −2p1(su(E ))− 6χh(X ). (6)

When g is generic in the sense of [17, 29], then Mw
κ (X , g) is a smooth

(usually non-compact) manifold if non-empty.
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Anti-self-dual connections and the BMY Conjecture

If Conjecture 2 holds, then su(E ) admits a g -anti-self-dual connection
when the basic lower bound (4) holds and the metric g on X is generic.

The moduli space Mw
κ (X , g) is thus a non-empty, smooth manifold and so

exp dimMw
κ (X , g) ≥ 0.

This yields the Bogomolov–Miyaoka–Yau inequality (3) since

0 ≤ 1

2
exp dimMw

κ (X , g)

= −p1(su(E ))− 3χh(X ) (by (6))

≤ −
(
c1(X )2 − 12χh(X )

)
− 3χh(X ) (by (4))

= −c1(X )2 + 9χh(X ).

Taubes [54] proved existence of solutions to the ASD equation (5) only
when the instanton number κ(E ) = −1

4 p1(su(E )) is sufficiently large.
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Bogomolov–Miyaoka–Yau inequality: theorems and conjectures Anti-self-dual connections and the BMY Conjecture

The difficulty in proving Conjecture 2 is because the basic lower bound (4)
implies that κ(E ) is small and Taubes’ gluing method does not apply.

We aim to prove Conjecture 2 via existence of projectively anti-self-dual
connections as absolute minima of a Hamiltonian function f for the circle
action on the singular moduli space of non-Abelian monopoles.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality

Non-Abelian monopoles and the
Bogomolov–Miyaoka–Yau inequality
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Moduli space of non-Abelian monopoles

Let (ρ,W ) be a spinc structure and (E , h) be a Hermitian vector bundle
over an oriented, Riemannian four-manifold (X , g).

Consider the affine space of unitary connections A on E that induce a
fixed unitary connection Ad on det E and sections Φ of W + ⊗ E .

We call (A,Φ) a non-Abelian monopole if

(F +
A )0 − ρ−1(Φ⊗ Φ∗)00 = 0,

DAΦ = 0,
(7)

where the section (Φ⊗ Φ∗)00 of su(W +)⊗ su(E ) is the trace-free
component of Φ⊗ Φ∗ of u(W +)⊗ u(E ) and DA is the Dirac operator and
ρ : ∧+(T ∗X )→ su(W +) is an isomorphism of SO(3) bundles.

The moduli space of non-Abelian monopoles is

Mt := {(A,Φ) obeying (7)} /GE .
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Moduli space of non-Abelian monopoles

The space Mt has a decomposition as a disjoint union of subsets

Mt = M ∗,0
t tM

{Φ≡0}
t tM

{A reducible}
t ,

where M ∗,0
t ⊂Mt is the subspace of irreducible, non-zero-section pairs, a

finite-dimensional smooth manifold for generic geometric perturbations
(see F. and Leness [24, 22] and Teleman [57]).

Our hypothesis in Conjecture 1 that X has a non-zero Seiberg–Witten
invariant ensures that the subspace M ∗,0

t is non-empty.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Circle action on the moduli space of non-Abelian monopoles

Multiplication by C∗ on sections Φ induces an S1 action on Mt with two
types of fixed points, represented by pairs (A,Φ) such that

Φ ≡ 0, or

A is a reducible connection for some splitting, E = L1 ⊕ L2.

For points [A,Φ] ∈Mt, there are bijections between

the subset of M
{Φ≡0}
t , where Φ ≡ 0, and the moduli space Mw

κ (X , g)
of anti-self-dual connections, and

subsets of M
{A reducible}
t , where A is reducible for a splitting

E = L1 ⊕ L2, and a moduli space Ms of Seiberg–Witten monopoles
defined by a spinc structure s = (ρ,W ⊗ L1).
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Circle action on the moduli space of non-Abelian monopoles

Ms1

Mt

Mw
κ

Ms2

Ms5

Ms4

Ms3

Figure 2.2: Non-Abelian monopole moduli space Mt with critical sets of the
Hamiltonian function given by Seiberg–Witten moduli subspaces Msi and the
moduli subspace Mw

κ (X , g) of anti-self-dual connections
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

We use a partial extension of Morse–Bott theory from smooth manifolds
to singular analytic spaces to try to prove Conjecture 2 on existence of
anti-self-dual connections on su(E ).

To motivate our version of Morse–Bott theory, we describe an idealized
model case. Hitchin’s Hamiltonian function,

f : Mt 3 [A,Φ] 7→ f [A,Φ] :=
1

2
‖Φ‖2

L2(X ) ∈ R, (8)

is continuous and smooth on smooth strata of Mt and attains its absolute
minimum value of zero on the moduli subspace Mw

κ (X , g), if non-empty.

(Hitchin used Morse–Bott theory for f in (8) in his analysis [36] of the
topology of the moduli space of Higgs pairs over a Riemann surface.)

We temporarily assume that Mt is a smooth manifold (usually false), in
which case f is also smooth, and that Mt is compact (usually false).
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

The moduli space Mt is equipped with the L2 Riemannian metric. Assume
further that f is Morse–Bott on Mt and that its critical submanifolds
comprise the moduli subspace Mw

κ (X , g) of anti-self-dual connections (if
non-empty) and the moduli subspaces Msi of Seiberg–Witten monopoles.

Because f is Morse–Bott on Mt, if [A,Φ] ∈Mt is a critical point, so

Ker df [A,Φ] = T[A,Φ]Mt,

then the Hessian of f (defined by the L2 metric) obeys

Ker Hess f [A,Φ] = T[A,Φ] Crit f ,

and the tangent space T[A,Φ]Mt has an orthogonal splitting,

T[A,Φ]Mt = T +
[A,Φ]Mt ⊕ T−[A,Φ]Mt ⊕ T 0

[A,Φ]Mt.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

The subspaces T±[A,Φ]Mt where Hess f [A,Φ] is positive or negative definite

are tangent spaces to the stable and unstable manifolds through [A,Φ].

The subspace T 0
[A,Φ]Mt where Hess f [A,Φ] is zero is the tangent space to

the critical submanifold Crit f .

The Morse–Bott signature of the critical point [A,Φ] is given by

λ+
[A,Φ](f ) := dim T±[A,Φ]Mt and λ0

[A,Φ](f ) := dim T 0
[A,Φ]Mt,

comprising the Morse–Bott index, co-index, and nullity.

Observation 2.1 (Positive Morse–Bott indices for Seiberg–Witten critical points
=⇒ existence of anti-self-dual connections)

If the Morse–Bott index of every Seiberg–Witten critical submanifold is positive,
then the critical submanifold given by the moduli space of anti-self-dual
connections is non-empty.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

Ms1

Mt

Mw
κ

Ms2

Ms5

Ms4

Ms3

Figure 2.3: Non-Abelian monopole moduli space Mt with critical sets of the
Hamiltonian function given by Seiberg–Witten moduli subspaces Msi and the
moduli subspace Mw

κ (X , g) of anti-self-dual connections
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

One can compute the Morse–Bott index of a critical point using Frankel’s
Theorem [28], used by Hitchin [36] for the moduli space of Higgs
monopoles on a Hermitian bundle (E , h), whose rank and degree are
coprime, over a Riemann surface.

Suppose that (M, g , J) is an almost Hermitian manifold that admits a
smooth circle action ρ : S1 ×M → M and a circle-invariant,
non-degenerate two-form, ω = g(·, J·).

Let f be a Hamiltonian function for the circle action, so

df = ιξω,

where the smooth vector field ξ on M is the generator of the S1 action.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

Theorem 2.2 (Frankel’s theorem for almost Hermitian manifolds)

(See Frankel [28, Section 3] for complex, Kähler manifolds and [23, Theorem 2]
for almost Hermitian manifolds.)

1 A point p ∈ M is a critical point of f ⇐⇒ p is a fixed point of the circle
action ρ on M.

2 The Hamiltonian, f , is Morse–Bott at each critical point p, with Morse–Bott
signature (λ+

p (f ), λ−p (f ), λ0
p(f )) given by the dimensions

(λ+
p (ρ), λ−p (ρ), λ0

p(ρ)) of the positive, negative, and zero weight spaces for
the circle action ρ∗ on the tangent space TpM.

If X is a compact, complex Kähler surface, then the subspace M sm
t of

smooth points is a complex Kähler manifold with circle-invariant Kähler
form ω and f in (8) is a Hamiltonian function for this circle action.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Morse–Bott theory for non-Abelian monopoles

Thus, if X is Kähler, then the following are equivalent for [A,Φ] ∈M sm
t :

[A,Φ] is a critical point of f ,

[A,Φ] is a fixed point of the circle action on M sm
t ,

A is reducible, so (A,Φ) is a Seiberg–Witten monopole, or Φ ≡ 0 and
A is projectively anti-self-dual.

The preceding ideas extend to the case of fixed points [A,Φ] ∈Mt that
are singular points of the moduli space.

In [23], we apply the Hirzebruch–Riemann–Roch Theorem to compute a
virtual Morse–Bott signature for each fixed point [A,Φ] ∈Mt represented
by a Seiberg–Witten monopole and show that its virtual Morse–Bott index,

λ−[A,Φ](f ) := dim H−,1A,φ − dim H−,2A,φ,

is positive and thus cannot be a local minimum.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Virtual Morse–Bott theory for non-Abelian monopoles

Few of our assumptions for the idealized model hold in practice:

1 Singular critical points. The moduli subspace Mw
κ (X ) of anti-self-dual

connections and moduli subspaces Msi of Seiberg–Witten monopoles
are singularities in the moduli space Mt of non-Abelian monopoles
(even when those subspaces are smooth manifolds).

2 Non-compact. The moduli space Mt of non-Abelian monopoles is
non-compact due to Uhlenbeck energy bubbling [59, 60].

3 Non-Kähler. The moduli space Mt of non-Abelian monopoles is not
necessarily a complex Kähler manifold (away from singularities) when
the almost complex structure J on X is not assumed integrable and
the fundamental two-form ω = g(·, J·) is not assumed closed.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Virtual Morse–Bott theory for non-Abelian monopoles

The non-compactness of Mt can be addressed in two ways:

When X is a smooth, complex projective surface, the Hitchin–Kobayashi
correspondence gives a real analytic isomorphism between M 0

t and the
moduli space M0(E , ω) of Bradlow stable, holomorphic pairs.

M0(E , ω) has a Gieseker compactification, a moduli space Mss(E , ω) of
pairs of coherent sheaves and sections that are semistable in the sense of
Bradlow, Gieseker, and Maruyama (see Dowker [18], Huybrechts and Lehn
[38, 37], Lin [43], Okonek, Teleman, and Schmitt [47], and Wandel [61]).

When X is a smooth Riemannian four-manifold, then Mt admits an
Uhlenbeck (or bubble-tree) compactification M̄t given by the Uhlenbeck
closure of Mt in the space of ideal non-Abelian monopoles,

IMt :=
∞⊔
`=0

(
Mt(`) × Sym`(X )

)
, (9)
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Virtual Morse–Bott theory for non-Abelian monopoles

where t(`) = (ρ,W ⊗ E`) and (E`, h`) is a rank-2 Hermitian vector bundle
over X with fixed unitary connection Ad on det E` ∼= det E and

c1(E`) = c1(E ), c2(E`) = c2(E )− `, p1(su(E`)) = p1(su(E )) + 4`.

We call the intersection of M̄t with Mt(`) × Sym`(X ) its `-th level.

Either choice of compactification (Gieseker or Uhlenbeck) introduces more
singularities and leads back to the first difficulty that the moduli space Mt

of non-Abelian monopoles (and any compactification) has singularities.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Virtual Morse–Bott theory and existence of ASD connections

We summarize our program to prove Conjecture 1:

1 Prove existence of feasible spinu structure t = (ρ,W ⊗ E ) with

p1(su(E )) obeying the basic lower bound (4);
Moduli subspace M ∗,0

t of irreducible, non-zero-section non-Abelian
monopoles is non-empty.

2 Prove that all critical points of Hitchin’s function on M̄t are

points in the anti-self-dual moduli subspace Mw
κ (X , g) ⊂Mt; or

points in moduli subspaces Ms ⊂ M̄t of Seiberg–Witten monopoles.

3 Prove that all points in moduli subspaces Ms ⊂ M̄t of
Seiberg–Witten monopoles have positive virtual Morse–Bott index.

The above three steps in our program are completed in our monograph
[23] for Mt when X is Kähler and almost completed for Mss(E , ω) when
X is smooth, complex projective, but not yet for M̄t when X smooth.
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Monopoles and the Bogomolov–Miyaoka–Yau inequality Virtual Morse–Bott theory and existence of ASD connections

Ms1

Mt

Mw
κ
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Ms5

Ms4
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Figure 2.4: Non-Abelian monopole moduli space Mt with critical sets of the
Hamiltonian function given by Seiberg–Witten moduli subspaces Msi and the
moduli subspace Mw

κ (X , g) of anti-self-dual connections
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Virtual Morse–Bott indices for Hamiltonian functions

Virtual Morse–Bott indices for Hamiltonian functions of
circle actions on complex analytic subspaces of complex,
Kähler manifolds with holomorphic C∗ actions
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Virtual Morse–Bott indices for Hamiltonian functions

Inspired by Hitchin [36], we extend the definition of the index of a
Morse–Bott function at a critical point in a smooth manifold to the case of

A critical point of a Hamiltonian function for the circle action on
C∗-invariant, closed, complex analytic subspace of a complex,
Kähler manifold with a holomorphic C∗ action.

Complex analytic spaces with circle actions are pervasive in gauge theory
over complex Kähler manifolds or smooth complex, projective varieties:

Moduli spaces of Higgs bundles (Hitchin–Simpson pairs),

Moduli spaces of projective vortices (Bradlow pairs),

Moduli spaces of non-Abelian monopoles,

Moduli spaces of stable pairs of holomorphic bundles and sections.
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Virtual Morse–Bott indices for Hamiltonian functions Bia lynicki–Birula decompositions for complex manifolds

Bia lynicki–Birula theory for holomorphic C∗ actions on
complex manifolds
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Virtual Morse–Bott indices for Hamiltonian functions Bia lynicki–Birula decompositions for complex manifolds

Based on results due to Bia lynicki–Birula [8] for torus actions on smooth
algebraic varieties (also Carrell and Sommese [13], Fujiki [30]), we have

Definition 3 (Bia lynicki–Birula decompositions for complex manifolds)

Let X be a complex manifold and C∗ × X → X be a holomorphic C∗ action such
that the subset X 0 := XC∗ ⊂ X of fixed points of the C∗ action is non-empty
with at most countably many connected components, X 0

α for α ∈ A , that are
embedded complex submanifolds of X . For each α ∈ A , define

X +
α :=

{
z : lim

λ→0
λ · z ∈ X 0

α

}
and X−α :=

{
z : lim

λ→∞
λ · z ∈ X 0

α

}
, (10)

so the subsets X +
α ⊂ X are C∗-invariant and mutually disjoint for all α ∈ A and

similarly for the the subsets X−α ⊂ X for all α ∈ A , and

π+
α (z) := lim

λ→0
λ·z , for all z ∈ X +

α , and π−α (z) := lim
λ→∞

λ·z , for all z ∈ X−α .

(11)
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Virtual Morse–Bott indices for Hamiltonian functions Bia lynicki–Birula decompositions for complex manifolds

Definition 3 (Bia lynicki–Birula decompositions for complex manifolds)

Then X has a (mixed, plus, or minus) Bia lynicki–Birula decomposition if the
following hold:

1 Each X +
α is an embedded complex submanifold of X ;

2 The natural map π+
α : X +

α → X 0
α is a C∗-equivariant, holomorphic,

maximal-rank surjection;

and the analogous properties hold for the subsets X−α and for the maps
π−α : X−α → X 0

α. Furthermore, we require that:

3 The normal bundles NX 0
α/X

+
α

of X 0
α in X +

α and NX 0
α/X

−
α

of X 0
α in X−α are

subbundles of the normal bundle NX 0
α/X

of X 0
α in X . There is a weight-sign

decomposition defined by the S1 action on X induced by the C∗ action,

TX � X 0
α = T 0Xα ⊕ N+

X 0
α/X
⊕ N−X 0

α/X
; (12)
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Virtual Morse–Bott indices for Hamiltonian functions Bia lynicki–Birula decompositions for complex manifolds

Definition 3 (Bia lynicki–Birula decompositions for complex manifolds)

4 For some A ⊂ A × {+,−}, the space X is expressed as a disjoint union,

X =
⊔

(α,j)∈A

X j
α. (13)

If one can express X as

X =
⊔
α∈A

X +
α or X =

⊔
α∈A

X−α , (14)

where the union is disjoint, then we say that X has a plus or minus
decomposition, respectively and, otherwise, if X is expressed as in (13), that it
has a mixed decomposition.

One has the following result due to Bia lynicki–Birula [8], Carrell and
Sommese [13, 14, 15], Fujiki [30], and Yang [64] (see F. [21, Theorem 3]
for a generalization).
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Virtual Morse–Bott indices for Hamiltonian functions Bia lynicki–Birula decompositions for complex manifolds

Theorem 4 (Bia lynicki–Birula decomposition for Kähler manifolds)

If X is a compact, complex Kähler manifold with a holomorphic action
C∗ × X → X , then it admits plus and minus Bia lynicki–Birula
decompositions in the sense of Definition 3.
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Bia lynicki–Birula theory for holomorphic C∗ actions on
complex analytic spaces
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We have the following generalization of Definition 3.

Definition 5 (Bia lynicki–Birula decompositions for complex analytic spaces)

Let (X ,OX ) be a complex analytic space and C∗ × X → X be a holomorphic
action such that the subset X 0 ⊂ X of fixed points of the C∗ action is non-empty
with at most countably many connected components, X 0

α for α ∈ A , that are
locally closed complex analytic subspaces of X . For each α ∈ A , define X±α as in
(10) and the natural maps π±α as in (11). Then X has a (mixed, plus, or minus)
Bia lynicki–Birula decomposition if the following hold:

1 Each X +
α is a locally closed, complex analytic subspace of X ;

2 The map π+
α : X +

α → X 0
α is a C∗-equivariant epimorphism of complex

analytic spaces;

and the analogous properties hold for the subsets X−α and for the maps
π−α : X−α → X 0

α.
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Definition 5 (Bia lynicki–Birula decompositions for complex analytic spaces)

Furthermore, we require that:

3 X may be expressed as a disjoint union as in (13), for some subset
A ⊂ A × {+,−}.

If one can express X as a disjoint union as in (14), then we say that X has a plus
or minus decomposition, respectively and, otherwise, if X is expressed as in (13),
that it has a mixed decomposition.

Weber [62, Section 2, p. 539] studied the Bia lynicki–Birula decomposition
for singular complex algebraic varieties with C∗ actions that are
C∗-equivariantly embedded in smooth, complex algebraic varieties.

Drinfeld provides a more general framework in a 2013 preprint [19].

One can define analogues of Morse–Bott index, co-index, and nullity:
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Definition 6 (Stable and unstable subspaces of a complex analytic space and
Bia lynicki–Birula index, co-index, and nullity)

The locally closed complex analytic subspace X +
α (respectively, X−α ) is called the

stable (respectively, unstable) subspace for the fixed-point subspace X 0
α.

For each point p ∈ X 0
α, the Krull dimensions β0

X (p), β+
X (p), and β−X (p), of the

local rings OX 0
α,p

, OX+
p ,p

, and OX−
p ,p

are called the Bia lynicki–Birula nullity,

co-index, and index, respectively, of the point p in X defined by the C∗ action,
where we write X±p = X±α |p for the fibers of X±α over a point p ∈ X 0

α.

We have the following generalization of Theorem 4.
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Theorem 7 (Bia lynicki–Birula decomposition for a complex analytic space)

Let X be a finite-dimensional complex manifold, (Y ,OY ) be a closed complex
analytic subspace of X , and C∗ × X → X be a holomorphic action on X that
leaves Y invariant with at least one fixed point in Y .

1 If X has a plus (respectively, minus or mixed) Bia lynicki–Birula
decomposition as in Definition 3 with subsets X 0, X±, X±α , then Y inherits
a plus (respectively, minus or mixed) Bia lynicki–Birula decomposition as in
Definition 5 with locally closed complex analytic subspaces:

Y 0 = Y ∩ X 0, Y± = Y ∩ X±, Y±p = Y ∩ X±p , for all p ∈ Y 0. (15)

2 If p ∈ Y , then there is an open neighborhood U ⊂ Y of p such that
dim(Ysm ∩ U) = dim OY ,p, where Ysm ⊂ Y is the subset of smooth points.
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Theorem 7 (Bia lynicki–Birula decomposition for a complex analytic space)

3 If p ∈ Y 0 then, after possibly shrinking U, the Bia lynicki–Birula nullity,
co-index, and index of p in Y in the sense of Definition 6 are given by

β0
Y (p) = dim OY 0,p = dim(Y 0)sm ∩ U, (16a)

β+
Y (p) = dim OY +

p ,p
= dim(Y +

p )sm ∩ U, (16b)

β−Y (p) = dim OY−
p ,p

= dim(Y +
p )sm ∩ U, (16c)

where (Y 0)sm ⊂ Y 0 and (Y±p )sm ⊂ Y±p denote subsets of smooth points.

4 If β0
Y (p) > 0 (respectively, β+

Y (p) > 0 or β−Y (p) > 0), then (Y 0)sm ∩ U
(respectively, (Y +

p )sm ∩ U or (Y−p )sm ∩ U) is non-empty.

5 If the induced circle action S1 × X → X has a Hamiltonian function
f : X → R and β−Y (p) > 0 (respectively, β+

Y (p) > 0), then p is not a local
minimum (respectively, maximum) of the restriction f : Ysm ∪ {p} → R.

Krull dimensions are difficult to compute, but they may be estimated.
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Suppose (U,OU) is a local model space for an open neighborhood of a
point p in a complex analytic space (X ,OX ), so U is the topological
support of OD/I with a domain D ⊂ Cn and ideal I ⊂ OD with
generators f1, . . . , fr and structure sheaf OU := (OD/I ) � U. One has

dim OX ,p ≥ n − r ,

where exp dimp X := n − r is the expected dimension of X at p. When r
is equal to the minimal number of generators of Ip ⊂ OU,p, then

dim OX ,p = n − r .

Local models for moduli spaces are Kuranishi models and expected
dimensions are computable via the Hirzebruch–Riemann–Roch Theorem.

Such a lower bound for the Bia lynicki–Birula index is called the virtual
Bia lynicki–Birula index (or virtual Morse–Bott index).
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Theorem 8 (Feasibility of spinu structures)

(See F. and Leness [23, Theorem 3].) Let X be a standard four-manifold with

b−(X ) ≥ 2 and Seiberg–Witten simple type. Let X̃ = X #CP2
denote the

smooth blow-up of X and let g̃ be a smooth Riemannian metric on X̃ . Then
there exists a complex rank two vector bundle E over X̃ and spinu structure
t̃ = (ρ,W ⊗ E ) over X̃ such the following hold:

1 The moduli space M ∗,0
t̃

of irreducible, non-zero section non-Abelian
monopoles is non-empty for generic Riemannian metrics.

2 The bundle E over X̃ obeys the basic lower bound,

p1(su(E )) ≥ c1(X̃ )2 + 1− 12χh(X̃ ). (17)
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Theorem 8 (Feasibility of spinu structures)

3 The expected dimension of the moduli space Mw
κ (X̃ , g̃) of anti-self-dual

connections obeys the following inequality:

1

2
exp dimMw

κ (X̃ , g̃) ≤ −c1(X )2 + 9χh(X ). (18)

4 For all spinc structures s̃ for which Ms̃ continuously embeds in Mt̃, the
formal Morse–Bott index is positive:

λ−(̃t, s̃) := −2χh(X̃ )−
(
c1(s̃)− c1(̃t)

)
· c1(X̃ )−

(
c1(s̃)− c1(̃t)

)2
> 0. (19)

The expression (19) has the following motivation.

Suppose that [A,Φ] is a reducible, type 1 non-Abelian monopole with
Φ 6≡ 0, thus a fixed point of the S1 action on Mt and a critical point of
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the restriction of Hitchin’s Hamiltonian function f on the configuration
space C 0

t of all non-zero section, unitary pairs in the sense that

H1
A,Φ = TA,ΦMt ⊆ Ker df [A,Φ].

The point [∂̄A, ϕ] ∈M0(E , ω) defined by the Hitchin–Kobayashi
correspondence, where ∂̄A is a holomorphic structure on E and
Φ = (ϕ, 0) ∈ Ω0(E )⊕ Ω0,2(E ), is a fixed point of C∗ action on M0(E , ω).

One has the following weight splittings of Zariski tangent spaces and
obstruction spaces defined by the S1 action:

H1
A,Φ = H0,1

A,Φ ⊕ H+,1
A,Φ ⊕ H−,1A,Φ, and H2

A,Φ = H0,2
A,Φ ⊕ H+,2

A,Φ ⊕ H−,2A,Φ,

H1
∂̄A,ϕ

= H0,1

∂̄A,ϕ
⊕ H+,1

∂̄A,ϕ
⊕ H−,1

∂̄A,ϕ
, and H2

∂̄A,ϕ
= H0,2

∂̄A,ϕ
⊕ H+,2

∂̄A,ϕ
⊕ H−,2

∂̄A,ϕ
.

One has H0
A,Φ = (0) and H0

∂̄A,ϕ
= (0) since ϕ 6≡ 0 and one can also show

that H3
∂̄A,ϕ

= (0).
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Euler characteristics of the negative-weight complexes, H−,•A,Φ and H•,−
∂̄A,ϕ

,

are equal and computable by the Hirzebruch–Riemann–Roch Theorem:

Euler
(
∂̄−,•A,ϕ

)
:=

3∑
k=0

(−1)kh−,k
∂̄A,ϕ

=
3∑

k=0

(−1)kh−,kA,Φ =: Euler
(

d−,•A,Φ

)
.

Hence, the virtual Morse–Bott index for f at [A,Φ] ∈Mt or equivalently,
the virtual Bia lynicki–Birula index for the fixed point [∂̄A, ϕ] ∈M0(E , ω)
of the C∗ action ρ are given by

λ−[A,Φ](f ) := h−,1A,Φ − h−,2A,Φ = −Euler
(

d−,•A,Φ

)
= −Euler

(
∂̄−,•A,ϕ

)
= h−,1

∂̄A,ϕ
− h−,2

∂̄A,ϕ
=: λ−

∂̄A,ϕ
(ρ). (20)

The forthcoming Theorem 9 and Corollary 10 show that the expression
λ−(̃t, s̃) in (19) is equal to the virtual Morse–Bott index λ−[A,Φ](f ).
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Theorem 9 (Virtual Morse–Bott index of Hitchin’s Hamiltonian function at a
reducible non-Abelian monopole)

(See F. and Leness [23, Theorem 5].) Let (ρcan,Wcan) be the canonical
spinc structure over a closed, complex Kähler surface X , and E be a complex
rank two Hermitian vector bundle over X that admits a splitting E = L1 ⊕ L2 as a
direct sum of Hermitian line bundles, and t = (ρ,Wcan ⊗ E ) be the corresponding
spinu structure. Assume that (A,Φ) is a type 1 non-Abelian monopole on t that
is reducible with respect to the splitting E = L1 ⊕ L2 as a direct sum of Hermitian
line bundles, with Φ = (Φ1, 0) and Φ1 ∈ Ω0(W +

can ⊗ L1) non-zero. Then the
virtual Morse–Bott index (20) of Hitchin’s Hamiltonian function f in (8) at the
point [A,Φ] ∈Mt is given by minus twice the Euler characteristic of the
negative-weight elliptic complex for the holomorphic pair (∂̄A, ϕ), where
Φ1 = (ϕ, 0) ∈ Ω0(L1)⊕ Ω0,2(L1), and equals

λ−[A,Φ](f ) = −2χh(X )− (c1(L1)− c1(L2)) · c1(X )− (c1(L1)− c1(L2))2
. (21)
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Corollary 10 (Virtual Morse–Bott index of Hitchin’s Hamiltonian function at a
point represented by a Seiberg–Witten monopole)

(See F. and Leness [23, Corollary 6].) Let X be a closed, complex Kähler surface,
t be a spinu structure over X , and s be a spinc structure over X . If [A,Φ] ∈Mt

is a point represented by a reducible, non-Abelian type 1 monopole in the image
of the embedding of the moduli space Ms of Seiberg–Witten monopoles on s into
the moduli space Mt of non-Abelian monopoles on t, then the virtual Morse–Bott
index (20) of Hitchin’s Hamiltonian function f in (8) on the moduli space Mt at
[A,Φ] is given by

λ−[A,Φ](f ) = −2χh(X )− (c1(s)− c1(t)) · c1(X )− (c1(s)− c1(t))2
, (22)

where c1(s) := c1(W +) ∈ H2(X ;Z) and c1(t) := c1(E ) + c1(W +) ∈ H2(X ;Z).
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Corollary 11 (Positivity of virtual Morse–Bott index of Hitchin’s Hamiltonian at
point represented by Seiberg–Witten monopole for a feasible spinu structure)

(See F. and Leness [23, Corollary 7].) Let X be a closed, complex Kähler surface

with b1(X ) = 0, b−(X ) ≥ 2, and b+(X ) ≥ 3. If X̃ = X #CP2
is the blow-up of

X and t̃ is the spinu structure on X̃ constructed in Theorem 8, then for all
non-empty Seiberg–Witten moduli subspaces Ms̃ that are continuously embedded
in Mt̃ as type 1 reducible, non-Abelian monopoles, the virtual Morse–Bott index
(20) of Hitchin’s Hamiltonian f in (8) on Mt̃ is positive at all points in Ms̃.

54 / 81



Compact, connected, minimal complex surfaces: Test case

Compact, connected, minimal complex surfaces: Test case

55 / 81



Compact, connected, minimal complex surfaces: Test case

Compact, connected, minimal complex surfaces have the rough Kodaira
classification according their Kodaira dimension (namely, kod(X ) = −∞,
0, 1, or 2) and the more refined, Kodaira–Enriques classification (see
Figure 5.5) within each value of kod(X ).

A compact, complex surface X is projective if and only if there exists a
holomorphic line bundle L over X with c2

1 (L ) > 0 (see [7, Section IV.6,
Theorem 6.2, p. 159]).

In their proof of [7, Section IV.6, Theorem 6.2, p. 159], Barth, Hulek,
Peters, and Van de Ven prove that c2

1 (L ) > 0 is equivalent to L being
an ample line bundle, so L ⊗n is very ample for some n ≥ 1.

By definition, a line bundle M over a complex analytic space Z is very
ample if its space of holomorphic sections, H0(Z ,M ), yields a
holomorphic embedding of Z into CPN for some N ≥ 1 (see [7, Section
I.19, p. 57]).
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244 VI. The Enriques Kodaira Classification 

by the plurigenera and the first Betti number. (Blowing up changes neither 
of these, compare Theorem I.9.1 (iv) and (viii).) 

For convenience we give below the definitions of all these classes, though 
practically all of them have appeared earlier. These definitions are the stan
dard ones, except perhaps for the classes 5) and 6) and in particular class 2). 
They vary widely in explicitness: sometimes (e.g. for tori) they are as explicit 
as anybody can ask for; in other cases (e.g. for K 3-surfaces) they are very 
formal. 

The surfaces in several classes are minimal by definition. The minimality 
of the surfaces in class 3) is a consequence of Liiroth's theorem for curves 
(the image of a rational curve is again rational), whereas the minimality in 
the classes 4)-8) is due to the fact that (X, E) = -1 for a (-I)-curve E. 

Table 10. 

Class of X kod(X) smallest bl(X) possible c~ C2 

n> 0 with value of 
x~n = (')X a(X) 

1) minimal rational 
surfaces 0 2 8 or 9 4 or 3 

2) minimal surfaces 
of class VII -00 1 0,1 ::;0 ~O 

3) ruled surfaces 
of genus g > 1 2g 2 8(1 - g) 4(1 - g) 

4) Enriques surfaces 2 0 2 0 12 
5) bi-elliptic surfaces 2,3,4,6 2 2 0 0 
6) Kodaira surfaces 0 

a) primary 1 3 1 0 0 
b) secondary 2,3,4,6 1 1 0 0 

6) K 3-surfaces 1 0 0,1,2 0 24 
8) tori 1 4 0,1,2 0 0 
9) minimal properly 

elliptic surfaces 1 1,2 0 ~O 

10) minimal surfaces 
of general type 2 == 0(2) 2 >0 >0 

A rational surface is a surface that is birationally equivalent to lP'2. Apart 
from lP'2 we have described in V, Sect. 4 an infinite sequence of other minimal 
rational surfaces, namely the Hirzebruch surfaces ~n' n = 0,2,3, ... It will 
be shown later that there are no others. 

A surface of class VII is a surface X with kod(X) = -00 and b1 (X) = l. 
(Minimal surfaces in this class are often called of class VIla.) We have met 
two types of examples, namely Hopf surfaces (V, Sect 18) and Inoue surfaces 
(V, Sect. 19). We have already mentioned that the minimal surfaces X with 

Figure 5.5: Kodaira–Enriques classification of compact, connected, minimal
complex surfaces (from Barth, Hulek, Peters, and Van de Ven [7, Section VI.1,
Table 10, p. 244]).
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Minimal compact, complex surfaces of general type have c2
1 (X ) = K 2

X > 0
(where KX := ∧2T ∗X is the canonical line bundle and TX

∼= T 1,0X is the
holomorphic tangent bundle), so they are projective (see [7, Section IV.6,
Corollary 6.3, p. 160]).

For smooth complex projective surfaces, we may construct a
compactification of the moduli space of non-Abelian monopoles, Mt, as
a complex, projective variety.

Smooth complex projective surfaces are Kähler (restrict the Fubini–Study
metric on complex projective space to the embedded surface).

An analogue of Witten’s dichotomy for Seiberg–Witten monopoles over
complex, Kähler surfaces (see Morgan [46] or Witten [63]) shows that
non-Abelian monopoles are always of “type 1” or “type 2” and that it
suffices to only consider non-Abelian monopoles of type 1, that is,
projective vortices, in partial analogy with Bradlow [10, 11].
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We call a pair (A, ϕ) a projective vortex if A is a unitary connection on a
Hermitian vector bundle E over a complex, Kähler surface (X , ω) that
induces a fixed unitary connection, Ad , on the Hermitian line bundle det E
and ϕ is a section of E such that

Λω(FA)0 =
i

2
(ϕ⊗ ϕ∗)0,

(F 0,2
A )0 = 0,

∂̄Aϕ = 0,

where Λω is the adjoint of ω ∧ · : Ω0(X )→ Ω1,1(X ).

When F 0,2
Ad

= 0, a version of the Hitchin–Kobayashi correspondence
essentially due to Bradlow [11] shows that there is a bijection (up to gauge
equivalence) between projective vortices and
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Compact, connected, minimal complex surfaces: Test case

(poly-)stable holomorphic pairs, namely pairs (∂̄E , ϕ) of holomorphic
structures ∂̄E on E and holomorphic sections ϕ of E ,

F∂̄E = 0,

∂̄Eϕ = 0,

where F∂̄E := ∂̄E ◦ ∂̄E , that obey Bradlow’s (poly-)stability criterion.

When E has rank two, there is a set-theoretic bijection,

Mt,1
∼= Mps(E , ω),

between the moduli space of type 1 non-Abelian monopoles and the
moduli space of polystable holomorphic pairs.

Moreover, there is an isomorphism (in the sense of real analytic spaces),

M 0
t,1
∼= M0(E , ω),
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between the moduli space of non-zero-section, type 1 non-Abelian
monopoles and the moduli space of non-zero-section, stable holomorphic
pairs.

By adapting the proofs of previous related results due to Huybrechts and
Lehn [37, 38], Yinbang Lin [43], Okonek, Schmitt, and Teleman [47], and
Wandel [61], we can prove that there exists a complex projective moduli
space Mss(E , ω) of holomorphic pairs (E , ϕ) of sheaves and sections that
are semistable in the sense Bradlow, Gieseker, and Maruyama (see F,
Leness, and Wentworth [25]).

The complex projective moduli space Mss(E , ω) contains M0(E , ω) as an
open subspace and the isomorphism and embeddings,

M 0
t,1
∼= M0(E , ω) ↪→Mss(E , ω) ↪→ CPN ,

are circle-equivariant.
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Therefore, by combining the

Bia lynicki–Birula and (virtual) Morse–Bott theories due to F in [21],

Methods of F and Leness in [23], and

Deformation theory and calculations of virtual Morse–Bott indices by
F, Leness, and Wentworth in [25],

we obtain a new, gauge-theoretic proof of the known
Bogomolov–Miyaoka–Yau inequality (1) for compact, complex surfaces of
general type.
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Next steps

We have been exploring two main directions:

Uhlenbeck bubbling

Extend our calculation of virtual Morse–Bott indices for points
[A,Φ] ∈Mt represented by Seiberg–Witten monopoles to points
[A,Φ] ∈ M̄t that lie in Sym`(X )×Mt(`), that is, allow for bubbling.

There are two ways to address this:

1 Replace M̄t by the Gieseker compactification Mss(E , ω) when X is a
compact, complex projective surface of general type;

2 Use gluing to construct local models for Uhlenbeck boundary points.
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Next steps

The second approach should also lead to gauge-theoretic proofs of the
Bogomolov–Miyaoka–Yau inequality for compact, complex surfaces of
general type, but may extend the scope to include smooth four-manifolds
of Seiberg–Witten simple type.

The virtual Morse–Bott index of a Seiberg–Witten fixed point decreases
as an instanton bubble of multiplicity ` forms, but a version of the
Bogomolov–Gieseker inquality due to Bradlow [11, Theorem 4.1, p. 208]
appears to prevent ` from becoming so large that the virtual Morse–Bott
index of a Seiberg–Witten fixed point is non-positive.

Non-integrable almost complex structures and non-Kähler metrics

Extend our calculation of virtual Morse–Bott indices when X is a Kähler
surface by allowing X to be an almost Hermitian, smooth four-manifold.
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Next steps

For this purpose, a conjecture due to Tobias Shin [26] appears useful:

If (X , g , J) is an almost Hermitian manifold, then there is a
sequence {Ji}i∈N of almost complex structures Ji on X such that
the C 0-norms of the Nijenhuis tensors NJi become arbitrarily
small as i →∞.

Shin’s conjecture holds for examples of four-manifolds that are almost
complex but not complex (see Fernandez, Shin, and Wilson [26]).

If Shin’s conjecture is true, methods of holomorphic approximation (in the
spirit of Auroux, Donaldson, and Taubes) in combination with gluing
should allow us to extend our calculations to the general case of Conjecture
1, where X is a standard four-manifold of Seiberg–Witten simple type.

A weaker version of Shin’s conjecture has been proved by Johnny Evans
[20] for symplectic manifolds (using results due to Donaldson [16]) when
the C 0 norm is replaced L2 norm.
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Next steps

Thank you for your attention!
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