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Motivation

Clarify a certain one-to-one correspondence among

• triangulated categories with full exceptional collections,

• generalized root systems,

• semi-simple Frobenius structures.

In particular, we are interested in the Hurwitz Frobenius structures
and their relation to Bridgeland’s space of stability conditions for
Fukaya categories studied by Haiden–Katzarkov–Kontsevich.
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Generalized root systems

Definition 1
A root system R of rank µ is a tuple (N , I ,∆re) where

• N is a free Z-module of rank µ,

• I : N ×N −→ Z is a symmetric Z-bilinear form,

• ∆re is a subset of N , called the set of real roots,

satisfying the following properties:

1. N = Z∆re .

2. For each α ∈ ∆re , I (α, α) = 2.

3. For each α ∈ ∆re , define a reflection rα ∈ AutZ(N , I ) by
rα(λ) := λ− I (α, λ)α. Then, rα(∆re) = ∆re .

Definition 2
The group W (R) := 〈rα |α ∈ ∆re〉 is called the Weyl group of R.
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Remark 3
For simplicity, we only consider “simply-laced” root systems.

Remark 4
It is important that I is not assumed to be positive definite.

Remark 5
The Weyl group W (R) is not necessary a Coxeter group.
Therefore, we need an intrinsic definition of a Coxeter element
which does not depend on a particular presentation of W (R).

Definition 6
The signature of R is the signature (µ+, µ0, µ−) of IR where µ+

(resp. µ0, µ−) is the number of positive (resp. zero, negative)
eigenvalues of IR.
In particular, µ0 = rankZ(rad(I )) where

rad(I ) := {λ ∈ N | I (λ, λ′) = 0, λ′ ∈ N}.
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Proposition 7

Let R = (N , I ,∆re) be a root system of rank µ. The following are
equivalent.

1. (µ+, µ0, µ−) = (µ, 0, 0).

2. ∆re is a finite set.

3. W (R) is a finite group.

R satisfying these three conditions is called a finite root system.

Remark 8
Other types of our interest are

• affine root systems: (µ+, µ0, µ−) = (µ− 1, 1, 0),

• elliptic root systems: (µ+, µ0, µ−) = (µ− 2, 2, 0),

• cuspidal root systems: (µ+, µ0, µ−) = (µ− 2, 1, 1),

• (no name) : (µ+, µ0, µ−) = (µ+, µ0, 0).
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Irreducibility, isomorphisms, ..., are naturally defined.

The following is well-known (cf. Bourbaki).

Proposition 9

An irreducible finite root system is isomorphic to one of the
following types:

1. Aµ (µ ≥ 1):
• N := {(n1, . . . , nµ+1) ∈ Zµ+1 | n1 + · · ·+ nµ+1 = 0},
• I : the restriction of the standard Z-bilinear form on Zµ+1,
• ∆re := {α ∈ N | I (α, α) = 2}.

2. Dµ (µ ≥ 4):
• N := {(n1, . . . , nµ) ∈ Zµ | n1 + · · ·+ nµ ∈ 2Z},
• I : the restriction of the standard Z-bilinear form on Zµ,
• ∆re := {α ∈ N | I (α, α) = 2}.

3. Eµ (µ = 6, 7, 8): Omit today.
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The most important thing is the following

Definition 10
Let R = (N , I ,∆re) be a root system of rank µ.
A subset B = {α1, . . . , αµ} of ∆re is a root basis
if ∆re = WB · B where WB := 〈rα1 , . . . , rαµ〉 ⊂ W (R).

It follows that N = ZB and W (R) = WB .
In general, N = ZB does not imply that B is a root basis.

Definition 11
Let R = (N , I ,∆re) be a root system of rank µ. An element
c ∈ W (R) is called a Coxeter element of R if there exists a root
basis B = {α1, . . . , αµ} such that c = rα1 . . . rαµ .

Definition 12
A pair (R, c) of a root system R and a Coxeter element c of R is
called a generalized root system.
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Classification of finite generalized root systems

Theorem 13 (Nakamura–Shiraishi–T)

A generalized root system (R, c) with irreducible finite R is
isomorphic to one of the following types:

1. Aµ (µ ≥ 1) whose Coxeter–Dynkin diagram is

1 2
. . .

µ− 1 µ
��	�
�� ��	�
�� ��	�
�� ��	�
�� .

2. Dµ,k (µ ≥ 4, 1 ≤ k ≤ [µ/2]) whose Coxeter–Dynkin diagram is

1
. . .

µ− k − 1

µ− k

µ− k + 1

µ− k + 2
. . .

µ
��	�
�� ��	�
�� ��	�
��GGGGG

��	�
��wwwww ��	�
����	�
����	�
��GGGGG��	�
�� .

3. E6,1, E6,2, E6,3, E7,1, . . . , E7,5, E8,1, . . . , E8,9. (omit today)
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For a root basis B = {α1, . . . , αµ}, the Coxeter–Dynkin diagram is
given as follows:

• For each αi , put a vertex ◦i .
• “ ◦i ◦j ” if I (αi , αj) = 0.

• “ ◦i ◦j ” if I (αi , αj) = −1.

• “ ◦i ◦j ” if I (αi , αj) = +1.

Remark 14
Dµ,1 is a root system of type Dµ with the standard/usual Coxeter
element, which will be denoted simply by Dµ:

1 2
. . .

µ− 2

µ− 1

µ

��	�
�� ��	�
�� ��	�
�� ��	�
��GGGGG
��	�
��wwwww
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Problems

The characteristic polynomial of c of Dµ,k is given by

ϕDµ,k
(t) = (tµ−k + 1)(tk + 1).

Therefore, Dµ and Dµ,k (k ≥ 2) are not isomorphic.

Problem 15
Construct Dµ,k (k ≥ 2) geometrically.

Problem 16
Construct a Frobenius structure “compatible with ϕDµ,k

(t)”.

Our purpose is to give an affirmative answer to these problems
based on the idea that ”type Dµ is an type A with an involution”.
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Geometric construction of Dµ,k

For 1 ≤ k ≤ [µ/2], consider a holomorphic map

f : C∗ −→ C, z 7→ f (z) = z2(µ−k) + z−2k ,

and an involution ι : C∗ −→ C∗, z 7→ −z .
Then we have a short exact sequence

0 −→ H1(C∗;Z) −→ H1(C∗, f −1(R);Z) ∂−→ H̃0(f
−1(R);Z) −→ 0,

where 0 << R ∈ R and H̃ denotes the reduced homology

H̃0(f
−1(R);Z) = Ker(H0(f

−1(R);Z) −→ H0(C∗;Z)).

Remark 17
The intersection form I

H̃0
on H̃0(f

−1(R);Z) naturally induces a
finite root system of type A2µ−1 (exactly the same description as
above).
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Theorem 18 (Ikeda–Otani–Shiraishi–T)

The tuple (N , I ,∆re , c) where

• N := {λ ∈ H1(C∗, f −1(R);Z) | ι∗(λ) = −λ},
• I (λ, λ′) := 1

2 IH̃0
(∂λ, ∂λ′), λ, λ′ ∈ N ,

• ∆re := {α ∈ N | I (α, α) = 2},
• c ∈ AutZ(N , I ) is the automorphism induced by the
monodromy around the circle {w ∈ C | |w | = R},

is the generalized root system of type Dµ,k .
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Remark 19
The tuple (N ′, I ′,∆′

re , c
′) where

• N ′ := H1(C∗, f −1(R);Z),
• I ′(λ, λ′) := I

H̃0
(∂λ, ∂λ′), λ, λ′ ∈ N ′,

• ∆′
re := {α ∈ N ′ | I ′(α, α) = 2},

• c ∈ AutZ(N ′, I ′) is the automorphism induced by the
monodromy around the circle {w ∈ C | |w | = R},

is the generalized affine root system of type Ã2(µ−k),2k , whose

“ι-invariant generalized root system” is of type Ãµ−k,k :

1
. . .

µ− k − 1

µ− k

µ− k + 1

µ− k + 2
. . .

µ
��	�
�� ��	�
�� ��	�
��GGGGG

��	�
��wwwww ��	�
����	�
����	�
��GGGGG��	�
��wwwww .
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Idea of proof

There exist µ distinct points x1, . . . , xµ on C∗ such that zeros of f
are {x1,−x1, . . . , xµ,−xµ}.

For each i , choose a path pi from −xi to xi traveling
counterclockwise around the origin. Then ι∗([pi ]) = −[pi ] + δ
where δ is the image of the generator of H1(C∗;Z).

Note that {[p1]− δ/2, . . . , [pµ]− δ/2} is a Q-basis of N ⊗Z Q and
also that for (n1, . . . , nµ) ∈ Zµ we have

µ∑
i=1

ni

(
[pi ]−

1

2
δ

)
∈ N ⇐⇒

µ∑
i=1

ni ∈ 2Z,

which is nothing the description of the Dµ-lattice.

It is easy to find the expected root basis.
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ι-invariant deformation of f and the Frobenius structure

Consider the following deformation FDµ,k
of f

FDµ,k
(z ; s) := z2(µ−k) +

µ−k∑
i=1

s∞,iz
2i−2 +

k∑
j=1

s2j−1
0,k s0,j

1

z2j
,

over the parameter space

MDµ,k
:= {(s∞,1, . . . , s∞,µ−k , s0,1, . . . , s0,k−1, s0,k)}
= Cµ−k × Ck−1 × C∗.

FDµ,k
is ι-invariant, FDµ,k

(−z ; s) = FDµ,k
(z ; s).

Example 20

FD4,1(z ; s) := z6 + s∞,1 + s∞,2z
2 + s∞,3z

4 + s20,1z
−2.

FD4,2(z ; s) := z4 + s∞,1 + s∞,2z
2 + s0,2s0,1z

−2 + s40,2z
−4.
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Frobenius structure on M is a tuple (◦, η, e,E ) where
◦ : TM ⊗OM

TM −→ TM , η : TM ⊗OM
TM −→ OM and

e,E ∈ Γ(M, TM) satisfying several “flatness conditions” and
“homogeneity conditions”. It is locally described by flat coordinates
and a local holomorphic function called the Frobenius potential.

There is a systematic construction of a Frobenius structure by the
use of a primitive form (cf. Saito–T).

A key step is the following Kodaira–Spencer isomorphism.
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Proposition 21

There exists an isomorphism of OMDµ,k
-free modules

KSι : TMDµ,k

∼=
(
OMDµ,k

[z , z−1]

/(
∂FDµ,k

∂z

))ι

.

By this isomorphism, a product structure ◦ on TMDµ,k
is induced

from the one on the RHS and we can define
e := KS−1

ι ([1]) = ∂/∂s∞,1,

E := KS−1
ι ([FDµ,k

]) =

µ−k∑
i=1

d∞,i s∞,i
∂

∂s∞,i
+

k∑
j=1

d0,js0,j
∂

∂s0,j
,

d∞,i :=
µ− k − i + 1

µ− k
, d0,j :=

2k − 2j + 1

2k
+

1

2(µ− k)
.

Note that d∞,i and d0,j are positive.
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Let ΩFDµ,k
,−ι :=

(
OMDµ,k

[z , z−1]dz
/
dFDµ,k

)−ι
.

There exists a non-degenerate symmetric OMDµ,k
-bilinear form

JFDµ,k
,−ι : ΩFDµ,k

,−ι × ΩFDµ,k
,−ι −→ OMDµ,k

,

([ϕ1dz ], [ϕ2dz ]) 7→
1

2π
√
−1

∮
|
∂FDµ,k

∂z
|=ϵ

ϕ1ϕ2

∂FDµ,k

∂z

dz .

A nowhere vanishing 1-form ζ yields the OMDµ,k
-isomorphism

TMDµ,k

ζ∼= ΩFDµ,k
,−ι, X 7→ [XFDµ,k

· ζ],

which enables one to define η on TMDµ,k
. If ζ is “good enough”,

one can show the tuple (◦, η, e,E ) satisfies “flatness conditions”
and “homogeneity conditions” and hence one obtains a Frobenius
structure.
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There exist a filtered de Rham cohomology group H(0)
FDµ,k

,−ι, the

Gauß–Manin connection ∇ and the higher residue pairing
KFDµ,k

,−ι.

In particular, [dz ] ∈ H(0)
FDµ,k

,−ι is a primitive form with the minimal

exponent 1
2(µ−k) , which induces on MDµ,k

a Frobenius structure of

rank µ and conformal dimension 1 − 2
2(µ−k) .

(From results by Milanov–Tseng, Ishibashi–Shiraishi–T, Milanov)
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Theorem 22 (IOST)

1. The Frobenius potential F is an element of

Q[t0,k , t
−1
0,k ][t∞,1, . . . , t∞,µ−k , t0,1, . . . , t0,k−1],

where t∗,∗ is the flat coordinate corresponding to s∗,∗.

2. Exponents of the Frobenius structure are exponents of the
characteristic polynomial ϕDµ,k

(t) of the Coxeter element.
Namely, we have

ϕDµ,k

(
e
2π

√
−1

(
d∗,∗− 1

2(µ−k)

))
= 0.

Since 1 ≤ k ≤ µ− k , d∞,µ−k − 1
2(µ−k) =

1
2(µ−k) is indeed the

“minimal” exponent, the smallest one with respect to the natural
ordering < on Q. This shows that this Frobenius structure is the
most natural one.
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Example 23 (D4 = D4,1)

e =
∂

∂t∞,1
, E = t∞,1

∂

∂t∞,1
+
2

3
t∞,2

∂

∂t∞,2
+
1

3
t∞,3

∂

∂t∞,3
+
2

3
t0,1

∂

∂t0,1
,

ϕD4,1(t) = (t3 + 1)(t + 1), exponents:

{
1

6
,
3

6
,
3

6
,
5

6

}
,

FD4,1 =
1

12
t2∞,1t∞,3 +

1

12
t∞,1t

2
∞,2 + t∞,1t

2
0,1

− 1

216
t3∞,2t∞,3 +

1

1632460
t7∞,3.
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Example 24 (D4,2)

e =
∂

∂t∞,1
, E = t∞,1

∂

∂t∞,1
+

1

2
t∞,2

∂

∂t∞,2
+ t0,1

∂

∂t0,1
+

1

2
t0,2

∂

∂t0,2
,

ϕD4,2(t) = (t2 + 1)2, exponents:

{
1

4
,
1

4
,
3

4
,
3

4

}
,

FD4,2 =
1

8
t2∞,1t∞,2 +

1

4
t∞,1t0,1t0,2

+
1

3
t∞,2t

4
0,2 +

1

32
t2∞,2t0,1t0,2 +

1

3840
t5∞,2 +

1

1536

t30,1
t0,2

.
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Remark 25
If k = 1, then F is a polynomial. In particular, we have a natural
identification

MDµ ∪ {s0,k = 0} = h/W (Dµ)

as expected, where h := HomZ(N ,C).

Remark 26
Dubrovin expected that an irreducible semi-simple Frobenius
structure with positive degrees whose Frobenius potential is an
algebraic function corresponds to an irreducible Coxeter group and
its “quasi-Coxeter element”. In particular, he expected that the
cases for the “standard” Coxeter elements correspond to
polynomial Frobenius structures, that is proven by Hertling.
Our result support Dubrovin’s conjecture for Dµ.
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Remark 27
Consider the map

MDµ,k
−→ M

Ãµ−k,k
:= Cµ−k × Ck−1 × C∗,

(s∞, s0,1, . . . , s0,k−1, s0,k) 7→ (s∞,
s0,1
s0,k

, . . . ,
s0,k−1

s0,k
, s20,k),

and the “ι-invariant version” of the story. Then [dz/z ] ∈ H(0)
FDµ,k

,ι

is a primitive form with the minimal exponent 0, which induces on
M

Ãµ−k,k
a Frobenius structure of rank µ and conformal dimension

1 which is isomorphic to the one from orbifold Gromov–Witten
theory for the orbifold P1

µ−k,k .
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Remark 28
The degree of the Lyashko–Looijenga map

LL : M
Ãµ−k,k

\ B −→ (Cµ \ diag) /Sµ,

where B is the bifurcation set, is calculated by Arnold and
Dubrovin as

(µ− 1)!

(µ− k − 1)!(k − 1)!
(µ− k)µ−kkk .

On the other hand, it turns out that the double of this number is
the number of all root bases for Dµ,k .
(follows from results by Kluitmann and Nakamura–Shiraishi–T)

Thus, MDµ,k
passes a compatibility test.
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Thank you very much!
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