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1. Gauged linear sigma models (GLSMs)

The input data of a gauged linear sigma model (GLSM) is a
5-tuple (V, G,Cx, W, ()
(1) (linear space) V = SpecC[xi,...,xm] ~ C™
(2) (gauge group) G C GL(V) ~ GL,(C) linear reductive
(3) (R symmetries) Ci, C GL(V), C; = C*.
G,Cgk commute, GNCx = (J) = pr
Ck acts on V by weights c1,...,cyn € Z, R charges q; = 2—?
(4) (superpotential) W € C[xy, ..., Xm]
o G-invariant: W(g-x) = W(x)Vg e G & W € C[x,
e quasi-homogeneous: W(t-x) =t"W(x)Vt € Cx
(5) (stability condition) ¢ € Hom(G, C*) < G-linearization on V
assumption: V& (¢) = VE(¢)
Xe =[V&(¢)/G] smooth DM stack
!
Ch " Xe =VE()/G = V/:G GIT quotient
= Cg/(J) | projective  w(t-[x]) = tw([x]),t € C},[x] € X¢
Xo = Spec(Clx, . . ., xm]®) — C

ey Xm]©



A GLSM is abelian if the gauge group G is abelian.
In most of this talk, G = (C*)".
We have a short exact sequence of abelian groups (let n = m — k)

156G (D1,i3>n+~) T~ (C)™E — T~ (C)" > 1
Mmaximal torus
GLn-i—n((C)
where D; € Hom(G,C*) =LY ~ Z*. Then
@ X is a smooth toric DM stack (Borisov-Chen-Smith)
o X; = V//¢G is a semiprojective simplicial toric variety
o X = [u*(¢)/Gr] where Gg = U(1)" C G = (C*)*, and
p:V =C"" — Lie(Gr) ~ Ly =LY ®z R ~ R" is the
moment map of Hamiltonian Ggr-action on C"*.
e ¢ € Ly ~ R" D secondary fan
(cf. Ernesto Lupercio's talk)



Example: quintic
V =C% = SpecC|xy,...,xs,p], G=C*, (cR-{0}
gauge charges G acts by weights (1,...,1, —5) }
R charges Ck acts by weights (0,...,0,1)

GNCy={1}
superpotential =p(x} + -+ x2) = pWs(x)
e (>0: Calab| Ya (C Y)/geometric phase

X = ((C°-{0})xC) /G = Kps

Crit(w) = {Ws(x) = p=0} = X5 Fermat quintic

c{p=0}=P*
GLSM invariants = Gromov-Witten (GW) invariants of Xs
@ ¢ < 0: Landau-Ginzburg (LG) phase
X =[(Cx(C—{0})) /C] = [C°/pus]
Crit(w)req = [0/ 5] ~ Bus
GLSM invariants = Fan-Jarvis-Ruan-Witten (FJRW)
invariants of (Ws, us)



Chiodo-Ruan (2008) LG/CY correspondence for quintic 3-folds:
GW invariants of X5 «— FJRW invariants of (Ws, 1s5)
(1) (e-wall-crossing) Givental style mirror theorems
o CY phase (Givental, Lian-Liu-Yau 1996-7):

]
Ji = I% under the mirror map
+
I
o LG phase (Chiodo-Ruan 2008): J_ = — under the mirror map

°
I+, J4+ are functions of 1 variable
take values in a 4-dimensional complex symplectic space
1 1
H(z): = zHY @ H: @ ;Hi ® ;Hi
(2) (¢-wall-crossing) /4 and [I_ are related by analytic
continuation and a C-linear symplectic isomorphism
¢ H(z)4 — H(z)- € Sps(C)

Question: e-wall-crossing and (-wall-crossing for GLSM



Cheong, Ciocan-Fontanine & Kim "“Orbifold Quasimap Theory”
e-stable quasimaps to X = [V**(()/G], € € Qso.

+
/ e—0 JEGHJrooJ

quasimap wall-crossing (e-wall-crossing)

= Givental style mirror theorems

= mirror theorem for smooth toric DM stacks
(Coates-Corti-Iritani-Tseng)

Y. Zhou: e-wall-crossing in orbifold quasimap theory in all genera
in full generality. It is expected that Y. Zhou's proof is
generalizable to GLSM = Givental style mirror theorems for all
GLSM in all phases (Shoemaker)

Clader-Janda-Ruan, “Higher-genus wall-crossing in the gauged
linear sigma model”, with an appendix by Y. Zhou:

GLSM for complete intersections in weighted projective spaces

Today: [-functions and (-wall-crossing for abelian GLSMs



2. Higgs branch

e Fan-Jarvis-Ruan, “A mathematical theory of the gauged linear
sigma model” 2015, 2018, 2020

@ Favero-Kim, “General GLSM invariants and their
cohomological field theories,” 2020

o Polischuk-Vaintrob: affine LG models
o Ciocan-Fontanine-Favero-Guéré-Kim-Shoemaker: convex
hybrid models
Let X =(V,G,C%, W, () be a general GLSM.
G and Cj generate ' C GL(V)

15G6-T5T/6=Ck/(J)=C;, — 1.



Landau-Ginzburg (LG) quasimaps

A genus-g, (-pointed, degree 5 € Ho(BG; Q) e-stable LG quasimap
to X is a 4-tuple Q = ((C,31,---,3¢), P, p, u)) where

(1) (C,31,--.,3¢) is a genus-g, ¢-pointed nodal orbicurve

(2) P — C is a principal -bundle

(3) p: Py C—> wi® = welsn + -+ +30)

(4) u € H°(C,P xr V)

[V/I] v Pxrv

P

¢ L Br=1[o/r]

\fxl
(o]
wcg

BC,

(5) The base locus B(Q) := u=(P xr V¢"(()) is purely 0-dim’l
and disjoint from marked points and nodes in C
+ e-stability condition



Moduli spaces

LG;Z(L B) := moduli of genus-g, ¢-pointed, degree /3 e-stable LG
quasimaps to X. We have evaluation maps

evi: LGS (X, 8) — X = | | Xewo i=1,....¢
VGBC

Fix g,¢, 5, and V = (v1,...,v) where v; € B, let

’
X = LG} (X, 8) = ﬂ ev H(Xev)-

i=1
Thenev;: X — X¢ ;.
Let Z; C X;, Z C X be the closed substack defined by
Crit(W) C V. By Fan-Jarvis-Ruan, X is a (usually non-proper)
separated DM stack of finite type, equipped with a perfect
obstruction theory of virtual dimension r. If Z; is proper then Z is
a proper DM stack.



Favero-Kim's construction

There exists a smooth DM stack U of finite type, a vector bundle
bundle By over U such that X is embedded in U as the zero locus
of fy € I'(U, By):

ix X =2Z(By) = U, [X[EE = cp(Bu,Bu)N[U] € A (X;Q).

where b = rankBy, and that the evaluation map ev; : X — A% .,
extends to ev? : U — X, . which is a smooth map between
smooth DM stacks.

X, U, By, Sy depend on (V, G,Ck, () but not on W.

Let we,, : X¢, — C be the restriction of the superpotential

we : X; — C, and define

14

wy = Z(ev,l-")*wm,i :U—C.
i=1

Then 3wy = 0. Favero-Kim constructed

[UT" € HZ™" (U, (20, —dwy)) -



LG loop spaces

In orbifold quasimap theory, the /-function is obtained by C*
localization on stacky loop spaces (orbifold version of Givental's
toric map spaces). We will introduce LG loop spaces which are
analogues of stacky loop spaces.

The domain is (P[a, 1], 00 = [1,0]) where a € Z~o, (g,¢) = (0,1).
M. Shoemaker “Towards a mirror theorem for GLSMs" (g, ¢) = (0, 2).
Given p=0,1, a € Z~g, m € Z, define

HP (]P’l, O(m/a)) := HP (P[a, 1], Op(, 1(m)) -

Given an effective class § € K¢ C Lg := L ®z Q, define

n+k ntk
qi qi
Vs = @ H* (P, 0D, 8- F)). Ws = P H!(PL 0D, 8- D))
i=1 i=1
degree /3 LG loop space X ¢ = [V3°(()/G]
degree (3 obstruction bundle Obg = [(v§5(g) X Wg)/G]



(CZ rotates P!, T and (CZ act linearly on Vg, Wj.
T x (CZ} acts on the smooth toric DM stack A3 .

Obg is a T x Cg-equivariant vector bundle over Xp ..
Let X5 . = [V§ /G] C X = [V5°(€)/G] is the open substack
such that the evaluatlon at oo is defined:

. o . o o \Cx*
eVoo 1 X o —> Xev(g)s  toov(p) t T = (A5 )7 = Xevp)-

NVIr Usu(pN5"  where NVlr € K(C*xT(XC ()

Fix 8 and let v = v(3). X = Fp is the zero locus of a regular
section By of a T-equivariant vector bundle By on U = A ,.

—wy = —we () = (au, fu)

for some ay € I'(U, Byy). Then Kg = {ay, Sy} is a Kozual matrix
factorization of (X, —w¢,). If we, = 0 (which is true when A¢
is compact, i.e. when v is “narrow”) then ay = 0 and

Kg = tgv«OF, . is the Kozual complex.



[-functions

For each effective class 3 € K¢, define
Fﬁ = tdCh s V(Kﬁ) S Heven (XC,V7 (Q;Q,w *dWC,v))

FB = e7(Bu) € Hx(Av).
The GLSM /-function of (V, G,Ck, W,() is

1
_ B
D I D
veBe gexs  Ci\Ng
W)=

The T’-equivariant I-function of (V, G,Ckx,0,() is

=3Iz, lz,=() Y Y R

veB; BeKS e(C*x T(Nwr)
v(B)=v



Central charges
Given B € MF(X;,w), [B] € K(MF(X;,w)), define

GLSM central charge  Zy([B]) = (I, [ wehy ([B]))

where ', ch,, € @ Hy., ®c C((z71)),
VGBC

Hu = (X, (@ dwe,)) = HA (X, S, C).
IﬁW analogue of Iritani's -class
chy ([B]) defined by Choa-Kim-Sreedhar.

Given B € Cohz(X;), [B] € Kz(X), define
T- equivariant central charge

Zz([8]) = Uz F3chz ([B]) = > Z((B])
e AT
where [ = zchz([B]) € @ H (Xev) ®r. R7(2™ ),

VEBC
Ry = Hx(e) = C[Ar, .., A



3. Coulomb branch
Hori-Romo 2013 (Sugishita-Terashima, Honda-Okuda)

Consider an abelian GLSM (V, G, C%, W, () where

G ~ (C*)" C SL(V) (Calabi-Yau)

0 = ¢ + 2m/—1B € LY complexified/stringy Kahler class
¢ = (extended) Kahler class, B = B-field
a=(ai,...,ap.) € R™F § € Lg, (D;,8) + a; > 0 for
1<i<n+=k

Given [B] € Kx([V//G]), define the

(a-perturbed) hemisphere partition function

- ¢ o)el?o)
Zo:(1B) = gy Ly, AT
where (o nffl' ((Dj,o)+c;), and
i=1
ch[Bl(0) = Y eV i Bl = Y oLy € Kz([V/G]), ¢ € Ry

telv telLv



e Zp>([B]) is a multidimensional inverse Mellin transform of

I'(o)ch[B](o)
i aj —0: without superpotential
@ (R-wall-crossing)

aj — qj/2: with superpotential

Proposition
There is an open subset U C Ly, such that

1 / dar(g)e<9+2ﬂ¢j1t,a>
5++v/—1Lg

(2mv/-1)"

is analytic in 6 on {6 = ( +2m/=1B | ( € Ly, B+t € U}.
More precisely,

Zp2(Le) =

n+rK
1
(B+t,0) < 4;\(D,~,a)| for all o € Lg \ {0}.



Theorem 1 (Aleshkin-L)
Let C be a phase of the GLSM, and let {p € C.
= C= ﬂ /) C Ly where /; = {Za,-D,- | a; € (0,+00)}.
le AT icl
Then there is an open subset Uc = ﬂ U; C Ly where
leAZ"

Ur={>_aiDi|ai € (N;,+00)} (N;>0) = shifted /,

iel
such that if ¢ € Uc then Zp2(L Z Z (L¢), where
IeAmln
Z Hr ((Ds, o +O‘)H( 1™ o(0+2mV=Tt0m)
1y m 1 m’|
mE(Z>0)’ iel iel
Om = — Z(m; + a;)D}' where {D}! : i € I} is a basis of Lg
iel

dual to the basis {D; : i € I} of Ligj. The infinite series Z'(Ly)
converges absolutely and uniformally on
{0 =C(+2rV/-1B: (€ Uy, B e Ly}



Moreover, we have the following Higgs-Coulomb correspondence

2o (B0}, e gt ey = 27D,

where {£1,...,&.} is an integral basis of LY and 1 </ < n+ k.
cf. Knapp-Romo-Scheidegger 2020

Proof by careful manipulation of x-dimensional cycles and
convergence checks of integrals | and series ).

Zo(e) = [ (=2 % /

A1 mGZ LxRAE— 1
ée: mEzZ; / xR Z %; mez /(Sl)n

k-dimensional residue

o Ai,... A, = Am'” are finite sets.

e Up to translation, R* ¢ C \/—1Lg.
@ Use the Calabi-Yau condition.



4. Wall-Crossing

abelian GLSMs without superpotentials:
@ Borisov-Horja “Mellin-Barnes integrals as Fourier-Mukai transforms”

@ Coates-Iritani-Jiang “The Crepant Transformation Conjecture for
Toric Complete Intersections.”

Let C,, C_ be two adjacent chambers in Ly = space of stability
conditions. Then C. are x-dimensional cones in the secondary fan,
and the (x — 1)-dimensional cone C; N C_ is contained in the
hyperplane (h)g := {¢ € Ly, | (¢, h) = 0} for some primitive
heL.

Let (4 € Cy, Xy = XC:&' Then

C:I: — ﬂ 4/7 Agln — Aj:ss U Anoness

leAzy ATNATE
I >
{1,...,n+k}=1,Ul_Ul, where I ={i|(D;j,h) < 0}
I -

A ={{ituJl|iel,Je Ay}, JeAyg=JCl,l|dl=x—-1



Theorem 2 (Aleshkin-L)
In the setting above, if t € LV satisfies the Grade Restriction Rule

n+k

1 1
B+t < 4 > 1Di k) = 5
i=1

where =3\ (Dj, h) = > ;) (Di, —h). Then there exists an
open subset U C Uc, such that for ( € U

Zpe(Lo)e = Y Z9(L)+ Y, Zi(Le)

JeAy | € Anoness

o Z%5(L,) is an explicit series of integrals over (S1)"~1 x R.

e Z/(L;) converges uniformly and absolutely for { € U; D Uc, .



The Grade Restriction Rule (GRR) (B +t, h) € (—5,

defines equivalences

3
N33
N—r

Db(xy)  —  DHX)

cr. DA — D)

Db(xy)  —  Dh(x)
D(MF(X.,w)) —s D(MF(X_,w))

@ Herbst-Hori-Page GRR
o Kawamata FM : Db(Xx,) —= DP(X_) (Fourier-Mukai)
o Coates-Iritani-Jiang-Segal GR = FM : D2(x}) — D2(X.)
(Grade Restriction Rule = Fourier-Mukai)
Ballard-Favero-Katzarkov, Halpern-Leistner

@ Baranovsky-Pecharich, ...

Theorem 2 = Zp>([B])+ and Zp2(GR[B])- are related by analytic
continuation. GR — symplectic transform
Future work: discrepant transformation, general G.



