Higgs-Coulomb correspondence and wall-crossing in abelian gauged linear sigma models

Chiu-Chu Melissa Liu (Columbia University) based on joint work with Konstantin Aleshkin dedicated to the memory of Professor Bumsig Kim

> Homological Mirror Symmetry IMSA, University of Miami January 28, 2023

Outline

- 1. Gauged linear sigma models (GLSMs)
- 2. Higgs branch
 - Landau-Ginzburg (LG) quasimaps
 - LG loop spaces and *I*-functions
 - ullet central charge $Z([\mathcal{B}])$ of a B-type D-brane \mathcal{B}
- 3. Coulomb branch
 - hemisphere partition function $Z_{D^2}([\mathcal{B}])$
 - (2d) Higgs-Coulomb correspondence $Z_{D^2}([\mathcal{B}]) \longrightarrow Z([\mathcal{B}])$
- 4. Wall-crossing

1. Gauged linear sigma models (GLSMs)

The input data of a gauged linear sigma model (GLSM) is a 5-tuple $(V, G, \mathbb{C}_P^*, W, \zeta)$

- (1) (linear space) $V = \operatorname{Spec}\mathbb{C}[x_1, \dots, x_m] \simeq \mathbb{C}^m$
- (2) (gauge group) $G \subset GL(V) \simeq GL_m(\mathbb{C})$ linear reductive
- (3) (R symmetries) $\mathbb{C}_{P}^{*} \subset GL(V)$, $\mathbb{C}_{P}^{*} \cong \mathbb{C}^{*}$.

$$G, \mathbb{C}_R^*$$
 commute, $G \cap \mathbb{C}_R^* = \langle J \rangle = \mu_r$

 \mathbb{C}_{R}^{*} acts on V by weights $c_{1},\ldots,c_{m}\in\mathbb{Z}$, R charges $q_{i}=\frac{2c_{j}}{r}$

- (4) (superpotential) $W \in \mathbb{C}[x_1, \dots, x_m]$
 - G-invariant: $W(g \cdot x) = W(x) \forall g \in G \Leftrightarrow W \in \mathbb{C}[x_1, \dots, x_m]^G$
 - quasi-homogeneous: $W(t \cdot x) = t^r W(x) \, \forall t \in \mathbb{C}_P^*$
- (5) (stability condition) $\zeta \in \operatorname{Hom}(G, \mathbb{C}^*) \Leftrightarrow G$ -linearization on Vassumption: $V_C^{ss}(\zeta) = V_C^s(\zeta)$

$$\mathcal{X}_{\zeta} = [V_G^{ss}(\zeta)/G]$$
 smooth DM stack \downarrow $\mathbb{C}^*_{\omega} \curvearrowright \mathcal{X}_{\zeta} = V_G^{ss}(\zeta)/G = V/\!/_{\!\!\!c} G$ GIT quotient

$$:= \mathbb{C}_R^*/\langle J \rangle \quad \downarrow \text{ projective } \quad w(t \cdot [x]) = tw([x]), t \in \mathbb{C}_\omega^*, [x] \in X_\zeta$$

$$X_0 = \operatorname{Spec}(\mathbb{C}[x_1, \dots, x_m]^G) \xrightarrow{w} \mathbb{C}$$

A GLSM is abelian if the gauge group G is abelian.

In most of this talk, $G = (\mathbb{C}^*)^{\kappa}$.

We have a short exact sequence of abelian groups (let $n=m-\kappa$)

$$1 o G\overset{(D_1,...,D_{n+\kappa})}{\longrightarrow} \quad \widetilde{T}\simeq (\mathbb{C}^*)^{n+\kappa}\longrightarrow T\simeq (\mathbb{C}^*)^n o 1 \ \cap \mathsf{maximal\ torus} \ GL_{n+\kappa}(\mathbb{C})$$

where $D_i \in \mathrm{Hom}(G,\mathbb{C}^*) = \mathbb{L}^{\vee} \simeq \mathbb{Z}^{\kappa}$. Then

- \mathcal{X}_{ζ} is a smooth toric DM stack (Borisov-Chen-Smith)
- $X_{\zeta} = V//_{\zeta}G$ is a semiprojective simplicial toric variety
- $\mathcal{X}_{\zeta} = [\mu^{-1}(\zeta)/G_{\mathbb{R}}]$ where $G_{\mathbb{R}} = U(1)^{\kappa} \subset G = (\mathbb{C}^*)^{\kappa}$, and $\mu: V = \mathbb{C}^{n+\kappa} \to \operatorname{Lie}(G_{\mathbb{R}}) \simeq \mathbb{L}_{\mathbb{R}}^{\vee} := \mathbb{L}^{\vee} \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}^{\kappa}$ is the moment map of Hamiltonian $G_{\mathbb{R}}$ -action on $\mathbb{C}^{n+\kappa}$.
- ullet $\zeta \in \mathbb{L}_{\mathbb{R}}^{ee} \simeq \mathbb{R}^{\kappa} \supset \mathsf{secondary} \mathsf{ fan}$

(cf. Ernesto Lupercio's talk)

Example: quintic

$$V=\mathbb{C}^6=\operatorname{Spec}\mathbb{C}[x_1,\ldots,x_5,p], \quad G=\mathbb{C}^*, \quad \zeta\in\mathbb{R}-\{0\}$$
 gauge charges G acts by weights $(1,\ldots,1,-5)$ \mathbb{C}^* R charges \mathbb{C}^*_R acts by weights $(0,\ldots,0,1)$ \mathbb{C}^* $\mathbb{C}^*_R=\{1\}$ superpotential $W=p(x_1^5+\cdots+x_5^5)=pW_5(x)$

• $\zeta > 0$: Calabi-Yau (CY)/geometric phase

$$\mathcal{X}_{\zeta} = \left((\mathbb{C}^5 - \{0\}) \times \mathbb{C} \right) / G = \mathcal{K}_{\mathbb{P}^4}$$
 $\operatorname{Crit}(w) = \{ W_5(x) = p = 0 \} = X_5 \text{ Fermat quintic}$ $\subset \{ p = 0 \} = \mathbb{P}^4$

GLSM invariants = Gromov-Witten (GW) invariants of X_5

• $\zeta < 0$: Landau-Ginzburg (LG) phase

$$\mathcal{X}_{\zeta} = \left[\left(\mathbb{C}^5 \times (\mathbb{C} - \{0\}) \right) / \mathbb{C}^* \right] = \left[\mathbb{C}^5 / \mu_5 \right]$$

$$\operatorname{Crit}(w)_{\operatorname{red}} = \left[0 / \mu_5 \right] \simeq B \mu_5$$
GLSM invariants = Fan-Jarvis-Ruan-Witten (FJRW) invariants of $\left(\mathcal{W}_5, \mu_5 \right)$

Chiodo-Ruan (2008) LG/CY correspondence for quintic 3-folds: GW invariants of $X_5 \longleftrightarrow \text{FJRW}$ invariants of (W_5, μ_5)

- (1) (ϵ -wall-crossing) Givental style mirror theorems
 - CY phase (Givental, Lian-Liu-Yau 1996-7): $J_+ = \frac{I_+}{I_+^0} \quad \text{under the mirror map}$
 - LG phase (Chiodo-Ruan 2008): $J_{-} = \frac{I_{-}}{I_{-}^{0}}$ under the mirror map
 - I_{\pm} , J_{\pm} are functions of 1 variable take values in a 4-dimensional complex symplectic space $H(z)_{\pm}=zH_{\pm}^{0}\oplus H_{\pm}^{2}\oplus \frac{1}{7}H_{\pm}^{4}\oplus \frac{1}{72}H_{\pm}^{6}$
- (2) (ζ -wall-crossing) I_+ and I_- are related by analytic continuation and a \mathbb{C} -linear symplectic isomorphism $\phi: H(z)_+ \to H(z)_- \in Sp_4(\mathbb{C})$

Question: ϵ -wall-crossing and ζ -wall-crossing for GLSM

Cheong, Ciocan-Fontanine & Kim "Orbifold Quasimap Theory" ϵ -stable quasimaps to $\mathcal{X}_{\zeta} = [V^{ss}(\zeta)/G]$, $\epsilon \in \mathbb{Q}_{>0}$.

$$I \stackrel{\epsilon \to 0^+}{\rightleftharpoons} J^{\epsilon} \stackrel{\epsilon \to +\infty}{\Longrightarrow} J$$

quasimap wall-crossing (ϵ -wall-crossing)

- ⇒ Givental style mirror theorems
- ⇒ mirror theorem for smooth toric DM stacks (Coates-Corti-Iritani-Tseng)

Y. Zhou: ϵ -wall-crossing in orbifold quasimap theory in all general in full generality. It is expected that Y. Zhou's proof is generalizable to GLSM \Rightarrow Givental style mirror theorems for all GLSM in all phases (Shoemaker)

Clader-Janda-Ruan, "Higher-genus wall-crossing in the gauged linear sigma model", with an appendix by Y. Zhou:

GLSM for complete intersections in weighted projective spaces

Today: *I*-functions and <u>C</u>-wall-crossing for abelian GLSMs

2. Higgs branch

- Fan-Jarvis-Ruan, "A mathematical theory of the gauged linear sigma model" 2015, 2018, 2020
- Favero-Kim, "General GLSM invariants and their cohomological field theories," 2020
 - Polischuk-Vaintrob: affine LG models
 - Ciocan-Fontanine-Favero-Guéré-Kim-Shoemaker: convex hybrid models

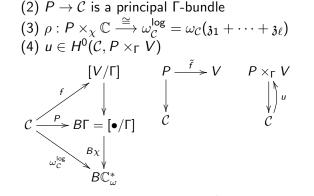
Let $\underline{\mathfrak{X}} = (V, G, \mathbb{C}_R^*, W, \zeta)$ be a general GLSM. G and \mathbb{C}_R^* generate $\Gamma \subset GL(V)$

$$1 \to G \to \Gamma \xrightarrow{\chi} \Gamma/G = \mathbb{C}_R^*/\langle J \rangle = \mathbb{C}_\omega^* \to 1.$$

Landau-Ginzburg (LG) quasimaps

A genus-g, ℓ -pointed, degree $\beta \in H_2(BG; \mathbb{Q})$ ϵ -stable LG quasimap to \mathfrak{X} is a 4-tuple $Q = ((\mathcal{C}, \mathfrak{z}_1, \dots, \mathfrak{z}_\ell), P, \rho, u))$ where

- (1) $(\mathcal{C}, \mathfrak{z}_1, \ldots, \mathfrak{z}_\ell)$ is a genus-g, ℓ -pointed nodal orbicurve
- (2) $P \rightarrow \mathcal{C}$ is a principal Γ -bundle



(5) The base locus $B(Q) := u^{-1}(P \times_{\Gamma} V_G^{un}(\zeta))$ is purely 0-dim'l and disjoint from marked points and nodes in $\mathcal C$ $+ \epsilon$ -stability condition

Moduli spaces

 $LG_{g,\ell}^{\epsilon}(\underline{\mathfrak{X}},\beta):=$ moduli of genus-g, ℓ -pointed, degree β ϵ -stable LG quasimaps to $\underline{\mathfrak{X}}$. We have evaluation maps

$$\operatorname{ev}_i: LG^\epsilon_{\mathbf{g},\ell}(\underline{\mathfrak{X}},\beta) \longrightarrow I\mathcal{X}_\zeta = \bigsqcup_{\mathbf{v} \in B_\zeta} \mathcal{X}_{\zeta,\mathbf{v}}, \quad i=1,\dots,\ell$$

Fix g, ℓ, β , and $\vec{v} = (v_1, \dots, v_\ell)$ where $v_i \in B_\zeta$, let

$$\mathbf{X} = LG^{\epsilon}_{\mathbf{g},\vec{\mathbf{v}}}(\underline{\mathfrak{X}},eta) := \bigcap_{i=1}^{\ell} \operatorname{ev}_{i}^{-1}(\mathcal{X}_{\zeta,\mathbf{v}_{i}}).$$

Then $\operatorname{ev}_i: \mathbf{X} \to \mathcal{X}_{\zeta, v_i}$.

Let $\mathcal{Z}_{\zeta} \subset \mathcal{X}_{\zeta}$, $\mathbf{Z} \subset \mathbf{X}$ be the closed substack defined by $\mathrm{Crit}(W) \subset V$. By Fan-Jarvis-Ruan, \mathbf{X} is a (usually non-proper) separated DM stack of finite type, equipped with a perfect obstruction theory of virtual dimension r. If \mathcal{Z}_{ζ} is proper then \mathbf{Z} is a proper DM stack.

Favero-Kim's construction

There exists a *smooth* DM stack **U** of finite type, a vector bundle bundle $B_{\mathbf{U}}$ over **U** such that **X** is embedded in **U** as the zero locus of $\beta_{\mathbf{U}} \in \Gamma(\mathbf{U}, B_{\mathbf{U}})$:

$$\iota_{\mathbf{X}}: \mathbf{X} = Z(\beta_{\mathbf{U}}) \hookrightarrow \mathbf{U}, \quad [\mathbf{X}]_{\mathsf{BF}}^{\mathrm{vir}} = c_b(B_{\mathbf{U}}, \beta_{\mathbf{U}}) \cap [\mathbf{U}] \in A_r(\mathbf{X}; \mathbb{Q}).$$

where $b=\mathrm{rank}B_{\mathbf{U}}$, and that the evaluation map $\mathrm{ev}_i:\mathbf{X}\to\mathcal{X}_{\zeta,v_i}$ extends to $\mathrm{ev}_i^{\mathbf{U}}:\mathbf{U}\to\mathcal{X}_{\zeta,v_i}$ which is a smooth map between smooth DM stacks.

X, **U**, $B_{\mathbf{U}}$, $\beta_{\mathbf{U}}$ depend on $(V, G, \mathbb{C}_R^*, \zeta)$ but not on W. Let $w_{\zeta, v} : \mathcal{X}_{\zeta, v} \to \mathbb{C}$ be the restriction of the superpotential $w_{\zeta} : \mathcal{X}_{\zeta} \to \mathbb{C}$, and define

$$w_{\mathbf{U}} := \sum_{i=1}^{\ell} (\operatorname{ev}_{i}^{\mathbf{U}})^{*} w_{\zeta, v_{i}} : \mathbf{U} \to \mathbb{C}.$$

Then $\iota_{\mathbf{X}}^* w_{\mathbf{U}} = 0$. Favero-Kim constructed

$$[\mathbf{U}]_{w}^{\mathrm{vir}} \in \mathbb{H}_{\mathbf{Z}}^{\mathit{even}}\left(\mathbf{U}, (\Omega_{\mathbf{U}}^{\bullet}, -dw_{\mathbf{U}})\right).$$

LG loop spaces

In orbifold quasimap theory, the I-function is obtained by \mathbb{C}^* localization on stacky loop spaces (orbifold version of Givental's toric map spaces). We will introduce LG loop spaces which are analogues of stacky loop spaces.

The domain is $(\mathbb{P}[a,1],\infty=[1,0])$ where $a\in\mathbb{Z}_{>0}$, $(g,\ell)=(0,1)$. M. Shoemaker "Towards a mirror theorem for GLSMs" $(g,\ell)=(0,2)$. Given $p=0,1,\ a\in\mathbb{Z}_{>0},\ m\in\mathbb{Z}$, define

$$H^p\left(\mathbb{P}^1,\mathcal{O}(m/\mathsf{a})\right):=H^p\left(\mathbb{P}[\mathsf{a},1],\mathcal{O}_{\mathbb{P}[\mathsf{a},1]}(m)\right).$$

Given an effective class $\beta \in \mathbb{K}^{\zeta} \subset \mathbb{L}_{\mathbb{Q}} := \mathbb{L} \otimes_{\mathbb{Z}} \mathbb{Q}$, define

$$V_{\beta} = \bigoplus_{i=1}^{n+\kappa} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(\langle D_{i}, \beta \rangle - \frac{q_{i}}{2})\right), \quad W_{\beta} = \bigoplus_{i=1}^{n+\kappa} H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(\langle D_{i}, \beta \rangle - \frac{q_{i}}{2})\right)$$

degree
$$\beta$$
 LG loop space $\mathcal{X}_{\beta,\zeta} = [V^{ss}_{\beta}(\zeta)/G]$ degree β obstruction bundle $Ob_{\beta} = [\left(V^{ss}_{\beta}(\zeta) \times W_{\beta}\right)/G]$

 \mathbb{C}_q^* rotates \mathbb{P}^1 , \widetilde{T} and \mathbb{C}_q^* act linearly on V_{β} , W_{β} . $\widetilde{T} \times \mathbb{C}_q^*$ acts on the smooth toric DM stack $\mathcal{X}_{\beta,\zeta}$. Ob_{β} is a $\widetilde{T} \times \mathbb{C}_q^*$ -equivariant vector bundle over $\mathcal{X}_{\beta,\zeta}$. Let $\mathcal{X}_{\beta,\zeta}^{\circ} = [V_{\beta}^{\circ}/G] \subset \mathcal{X}_{\beta,\zeta} = [V_{\beta}^{ss}(\zeta)/G]$ is the open substack such that the evaluation at ∞ is defined:

$$\operatorname{ev}_{\infty} : \mathcal{X}_{\beta,\zeta}^{\circ} \longrightarrow \mathcal{X}_{\zeta,\nu(\beta)}, \quad \iota_{\beta \to \nu(\beta)} : \mathcal{F}_{\beta,\zeta} := (\mathcal{X}_{\beta,\zeta}^{\circ})^{\mathbb{C}_{q}^{*}} \hookrightarrow \mathcal{X}_{\zeta,\nu(\beta)}.$$

$$N_{\beta}^{\operatorname{vir}} = \iota_{\beta \to \nu(\beta)}^{*} \widetilde{N}_{\beta}^{\operatorname{vir}} \quad \text{where } \widetilde{N}_{\beta}^{\operatorname{vir}} \in \mathcal{K}_{\mathbb{C}_{q}^{*} \times \widetilde{T}}(\mathcal{X}_{\zeta,\nu(\beta)}).$$

Fix β and let $v = v(\beta)$. $\mathbf{X} = \mathcal{F}_{\beta,\zeta}$ is the zero locus of a *regular* section $\beta_{\mathbf{U}}$ of a \widetilde{T} -equivariant vector bundle $B_{\mathbf{U}}$ on $\mathbf{U} = \mathcal{X}_{\zeta,v}$.

$$-w_{\mathbf{U}} = -w_{\zeta,\nu(\beta)} = \langle \alpha_{\mathbf{U}}, \beta_{\mathbf{U}} \rangle$$

for some $\alpha_{\mathbf{U}} \in \Gamma(\mathbf{U}, B_{\mathbf{U}}^{\vee})$. Then $\mathbb{K}_{\beta} = \{\alpha_{\mathbf{U}}, \beta_{\mathbf{U}}\}$ is a Kozual matrix factorization of $(\mathcal{X}_{\zeta, \nu}, -w_{\zeta, \nu})$. If $w_{\zeta, \nu} = 0$ (which is true when $\mathcal{X}_{\zeta, \nu}$ is compact, i.e. when ν is "narrow") then $\alpha_{\mathbf{U}} = 0$ and $\mathbb{K}_{\beta} = \iota_{\beta \to \nu *} \mathcal{O}_{\mathcal{F}_{\beta, \zeta}}$ is the Kozual complex.

I-functions

For each effective class $\beta \in \mathbb{K}^{\zeta}$, define

$$\begin{split} F_{\beta}^w := \operatorname{tdch}_{\mathcal{Z}_{\zeta,\nu}}^{\mathcal{X}_{\zeta,\nu}}(\mathbb{K}_{\beta}) \in \mathbb{H}^{even}_{\mathcal{Z}_{\zeta,\nu}}\left(\mathcal{X}_{\zeta,\nu}, \left(\Omega^{\bullet}_{\mathcal{X}_{\zeta,\nu}}, -dw_{\zeta,\nu}\right)\right) \\ F_{\beta}^{\widetilde{\mathcal{T}}} = e_{\widetilde{\mathcal{T}}}(B_{\boldsymbol{\mathsf{U}}}) \in H_{\widetilde{\mathcal{T}}}^*(\mathcal{X}_{\zeta,\nu}). \end{split}$$

The GLSM *I*-function of $(V, G, \mathbb{C}_R^*, W, \zeta)$ is

$$I_w(y,z) = \sum_{v \in B_\zeta} I_{w,v}, \quad I_{w,v} = (...) \sum_{\substack{\beta \in \mathbb{K}^\zeta \ v(\beta) = v}} y^{eta} rac{1}{e_{\mathbb{C}_q^*}(\widetilde{N}_{eta}^{\mathrm{vir}})} F_{eta}^w$$

The \widetilde{T} -equivariant I-function of $(V, G, \mathbb{C}^*_R, 0, \zeta)$ is

$$I_{\widetilde{T}}(y,z) = \sum_{v \in B_{\zeta}} I_{\widetilde{T},v}, \quad I_{\widetilde{T},v} = (...) \sum_{\substack{\beta \in \mathbb{K}^{\zeta} \\ v(\beta) = v}} y^{\beta} \frac{1}{e_{\mathbb{C}_{q}^{*} \times \widetilde{T}}(\widetilde{N}_{\beta}^{\mathrm{vir}})} F_{\beta}^{\widetilde{T}}$$

Central charges

Given
$$\mathcal{B} \in MF(\mathcal{X}_{\zeta}, w)$$
, $[\mathcal{B}] \in K(MF(\mathcal{X}_{\zeta}, w))$, define

GLSM central charge
$$Z_w([\mathcal{B}]) = \langle I_w, \hat{\Gamma}_w \operatorname{ch}_w([\mathcal{B}]) \rangle$$

where
$$\hat{\Gamma}_w \mathrm{ch}_w \in \bigoplus_{v \in B_c} H_{w,v} \otimes_{\mathbb{C}} \mathbb{C}((z^{-1}))$$
,

$$H_{w,v} = \mathbb{H}^* \left(\mathcal{X}_{\zeta,v}, (\Omega^{ullet}_{\mathcal{X}_{\zeta,v}}, dw_{\zeta,v}) \right) \cong H^*(\mathcal{X}_{\zeta,v}, w_{\zeta,v}^{\infty}; \mathbb{C}).$$

 $\hat{\Gamma}_w$ analogue of Iritani's Γ -class $\mathrm{ch}_w([\mathcal{B}])$ defined by Choa-Kim-Sreedhar.

Given $\mathcal{B} \in Coh_{\widetilde{T}}(\mathcal{X}_{\zeta})$, $[\mathcal{B}] \in K_{\widetilde{T}}(\mathcal{X}_{\zeta})$, define \widetilde{T} -equivariant central charge

$$Z_{\widetilde{T}}([\mathcal{B}]) = \langle I_{\widetilde{T}}, \hat{\Gamma}_{\widetilde{T}} \mathrm{ch}_{\widetilde{T}}([\mathcal{B}]) \rangle = \sum_{I \in A^{\min}} Z_{\widetilde{T}}^{I}([\mathcal{B}])$$

where
$$\hat{\Gamma}_{\widetilde{T}} \mathrm{ch}_{\widetilde{T}}([\mathcal{B}]) \in \bigoplus_{v \in B_{\zeta}} H_{\widetilde{T}}^*(\mathcal{X}_{\zeta,v}) \otimes_{R_{\widetilde{T}}} R_{\widetilde{T}}((z^{-1})),$$

$$R_{\widetilde{\tau}} = H_{\widetilde{\tau}}^*(\bullet) = \mathbb{C}[\lambda_1, \dots, \lambda_{n+\kappa}].$$

3. Coulomb branch

Hori-Romo 2013 (Sugishita-Terashima, Honda-Okuda)

Consider an abelian GLSM $(V, G, \mathbb{C}_R^*, W, \zeta)$ where

$$G\simeq (\mathbb{C}^*)^\kappa\subset SL(V)$$
 (Calabi-Yau)

$$\theta = \zeta + 2\pi\sqrt{-1}B \in \mathbb{L}_{\mathbb{C}}^{\vee}$$
 complexified/stringy Kähler class

$$\zeta = (extended)$$
 Kähler class, $B = B$ -field

$$\alpha = (\alpha_1, \dots, \alpha_{n+\kappa}) \in \mathbb{R}^{n+\kappa}$$
, $\delta \in \mathbb{L}_{\mathbb{R}}$, $\langle D_i, \delta \rangle + \alpha_i > 0$ for

$$1 \leq i \leq n + \kappa$$

Given $[\mathcal{B}] \in K_{\widetilde{T}}([V/G])$, define the

(α -perturbed) hemisphere partition function

$$Z_{D^2}([\mathcal{B}]) = rac{1}{(2\pi\sqrt{-1})^\kappa} \int_{\delta+\sqrt{-1}\mathbb{L}_\mathbb{R}} d\sigma \Gamma(\sigma) \mathrm{ch}[\mathcal{B}](\sigma) e^{\langle \theta, \sigma
angle}$$

where
$$\Gamma(\sigma) = \prod_{i=1}^{m+1} \Gamma(\langle D_i, \sigma \rangle + \alpha_i)$$
, and

$$\mathrm{ch}[\mathcal{B}](\sigma) = \sum_{t \in \mathbb{T} \setminus V} c_t e^{2\pi \sqrt{-1} \langle t, \sigma \rangle} \text{ if } [\mathcal{B}] = \sum_{t \in \mathbb{T} \setminus V} c_t \mathcal{L}_t \in K_{\widetilde{T}}([V/G]), c_t \in R_{\widetilde{T}}.$$

• $Z_{D^2}([\mathcal{B}])$ is a multidimensional inverse Mellin transform of $\Gamma(\sigma)\mathrm{ch}[\mathcal{B}](\sigma)$

ullet (*R*-wall-crossing) $\begin{cases} lpha_i o 0: & ext{without superpotential} \ lpha_i o q_i/2: & ext{with superpotential} \end{cases}$

Proposition

There is an open subset $U \subset \mathbb{L}_{\mathbb{R}}^{\vee}$ such that

$$Z_{D^2}(\mathcal{L}_t) = \frac{1}{(2\pi\sqrt{-1})^{\kappa}} \int_{\delta + \sqrt{-1}\mathbb{L}_{\mathbb{R}}} d\sigma \Gamma(\sigma) e^{\langle \theta + 2\pi\sqrt{-1}t, \sigma \rangle}$$

is analytic in θ on $\{\theta=\zeta+2\pi\sqrt{-1}B\mid \zeta\in\mathbb{L}_{\mathbb{R}}^{\vee}, B+t\in U\}$. More precisely,

$$|\langle B+t,\sigma \rangle| < rac{1}{4} \sum_{i=1}^{n+\kappa} |\langle D_i,\sigma \rangle| \ ext{for all } \sigma \in L_{\mathbb{R}} \setminus \{0\}.$$

Theorem 1 (Aleshkin-L)

Let C be a phase of the GLSM, and let $\zeta_0 \in C$.

$$\Rightarrow C = \bigcap_{I \in \mathcal{A}_{\mathbb{C}^{n}}^{min}} \angle_I \subset \mathbb{L}_{\mathbb{R}}^{\vee} \text{ where } \angle_I = \{ \sum_{i \in I} a_i D_i \mid a_i \in (0, +\infty) \}.$$

Then there is an open subset $U_C = \bigcap_{I \in \varDelta^{\min}} U_I \subset \mathbb{L}_\mathbb{R}^ee$ where

$$U_I = \{ \sum_{i \in I} a_i D_i \mid a_i \in (N_i, +\infty) \} \ (N_i \gg 0) = \text{shifted } \angle_I$$

such that if $\zeta \in U_C$ then $Z_{D^2}(\mathcal{L}_t) = \sum_{I \in \mathcal{A}_{C_c}^{\min}} Z^I(\mathcal{L}_t)$, where

$$Z^{I}(\mathcal{L}_{t}) = \frac{1}{|G_{I}|} \sum_{m \in (\mathbb{Z}_{\geq 0})^{I}} \prod_{\tilde{I} \in \tilde{I}} \Gamma\left(\langle D_{i}, \sigma_{m} \rangle + \alpha_{i}\right) \prod_{i \in I} \frac{(-1)^{m_{i}}}{m_{i}!} e^{\langle \theta + 2\pi\sqrt{-1}t, \sigma_{m} \rangle}$$

$$\sigma_m = -\sum_i (m_i + \alpha_i) D_i^{*I}$$
 where $\{D_i^{*I} : i \in I\}$ is a basis of $\mathbb{L}_{\mathbb{Q}}$

dual to the basis $\{D_i: i \in I\}$ of $\mathbb{L}_{\mathbb{Q}}^{\vee}$. The infinite series $Z^I(\mathcal{L}_t)$ converges absolutely and uniformally on

$$\{\theta=\zeta+2\pi\sqrt{-1}B:\zeta\in U_I,B\in\mathbb{L}_\mathbb{R}^\vee\}.$$

Moreover, we have the following Higgs-Coulomb correspondence

$$Z_{D^2}([\mathcal{B}])\Big|_{\theta=-\sum_{a=1}^{\kappa}(\log y_a)\xi_a,\ \alpha_i=\lambda_j+\frac{q_i}{2}}=Z_{\widetilde{T}}([\mathcal{B}])\Big|_{z=1}.$$

where $\{\xi_1,\ldots,\xi_\kappa\}$ is an integral basis of \mathbb{L}^\vee and $1\leq i\leq n+\kappa$. cf. Knapp-Romo-Scheidegger 2020

Proof by careful manipulation of κ -dimensional cycles and convergence checks of integrals \int and series \sum .

$$\begin{split} Z_{D^2}(\mathcal{L}_t) &= \int_{\mathbb{R}^{\kappa}} (\cdots) = \sum_{\mathcal{A}_1} \sum_{m \in \mathbb{Z}_{\geq 0}} \int_{S^1 \times \mathbb{R}^{\kappa - 1}} (\cdots) = \cdots \\ &= \sum_{\mathcal{A}_\ell} \sum_{m \in (\mathbb{Z}_{\geq 0})^\ell} \int_{(S^1)^\ell \times \mathbb{R}^{\kappa - \ell}} (\cdots) = \cdots = \sum_{\mathcal{A}_\kappa} \sum_{m \in (\mathbb{Z}_{\geq 0})^\kappa} \underbrace{\int_{(S^1)^\kappa} (\cdots)}_{\kappa \text{-dimensional residue}} \end{split}$$

- $\mathcal{A}_1, \ldots, \mathcal{A}_{\kappa} = \mathcal{A}_{\zeta_0}^{\min}$ are finite sets.
- Up to translation, $\mathbb{R}^{\kappa-\ell} \subset \sqrt{-1}\mathbb{L}_{\mathbb{R}}$.
- Use the Calabi-Yau condition.

4. Wall-Crossing

abelian GLSMs without superpotentials:

- Borisov-Horja "Mellin-Barnes integrals as Fourier-Mukai transforms"
- Coates-Iritani-Jiang "The Crepant Transformation Conjecture for Toric Complete Intersections."

Let C_+ , C_- be two adjacent chambers in $\mathbb{L}_{\mathbb{R}}^{\vee}=$ space of stability conditions. Then \bar{C}_{\pm} are κ -dimensional cones in the secondary fan, and the $(\kappa-1)$ -dimensional cone $\bar{C}_+\cap\bar{C}_-$ is contained in the hyperplane $(h^{\perp})_{\mathbb{R}}:=\{\zeta\in\mathbb{L}_{\mathbb{R}}^{\vee}\mid \langle\zeta,h\rangle=0\}$ for some primitive $h\in\mathbb{L}$.

Let $\zeta_{\pm} \in \mathcal{C}_{\pm}$, $\mathcal{X}_{\pm} := \mathcal{X}_{\zeta_{+}}$. Then

$$C_{\pm} = \bigcap_{I \in \mathcal{A}_{\zeta_{+}}^{\text{min}}} \angle_{I}, \quad \mathcal{A}_{\zeta_{\pm}}^{\text{min}} = \mathcal{A}_{\pm}^{\text{ess}} \cup \underbrace{\mathcal{A}_{\zeta_{+}}^{\text{noness}}}_{\mathcal{A}_{\zeta_{-}}^{\text{min}} \cap \mathcal{A}_{\zeta_{-}}^{\text{min}}}$$

$$\{1,\ldots,n+\kappa\}=I_+\cup I_-\cup I_0$$
, where $egin{array}{ll} I_+ &> & I_- &=\{i\mid \langle D_i,h
angle &< 0\} & I_0 &= & \end{array}$

Theorem 2 (Aleshkin-L)

In the setting above, if $t \in \mathbb{L}^{\vee}$ satisfies the Grade Restriction Rule

$$|\langle B+t,h\rangle|<rac{1}{4}\sum_{i=1}^{n+\kappa}|\langle D_i,h
angle|=rac{1}{2}\eta$$

where $\eta = \sum_{i \in I_+} \langle D_i, h \rangle = \sum_{i \in I_-} \langle D_i, -h \rangle$. Then there exists an open subset $U \subset U_{C_\pm}$ such that for $\zeta \in U$

$$Z_{D^2}(\mathcal{L}_t)_{\pm} = \sum_{J \in \mathcal{A}_0} Z_J^{\mathsf{ess}}(\mathcal{L}_t) + \sum_{I \in \mathcal{A}^{\mathsf{noness}}} Z_I(\mathcal{L}_t)$$

- $Z_I^{\text{ess}}(\mathcal{L}_t)$ is an explicit series of integrals over $(S^1)^{\kappa-1} \times \mathbb{R}$.
- $Z_I(\mathcal{L}_t)$ converges uniformly and absolutely for $\zeta \in U_I \supset U_{\mathcal{C}_\pm}$.

The Grade Restriction Rule (GRR) $\langle B+t,h\rangle\in(-\frac{\eta}{2},\frac{\eta}{2})$ defines equivalences

$$\begin{array}{cccc} & D^b(\mathcal{X}_+) & \longrightarrow & D^b(\mathcal{X}_-) \\ D^b_T(\mathcal{X}_+) & \longrightarrow & D^b_T(\mathcal{X}_-) \\ & D^b_{\widetilde{T}}(\mathcal{X}_+) & \longrightarrow & D^b_{\widetilde{T}}(\mathcal{X}_-) \\ & & D(MF(\mathcal{X}_+,w)) & \longrightarrow & D(MF(\mathcal{X}_-,w)) \end{array}$$

- Herbst-Hori-Page GRR
- Kawamata $\mathrm{FM}: D^b(\mathcal{X}_+) \stackrel{\simeq}{\longrightarrow} D^b(\mathcal{X}_-)$ (Fourier-Mukai)
- Coates-Iritani-Jiang-Segal $GR = FM : D_T^b(\mathcal{X}_+) \xrightarrow{\simeq} D_T^b(\mathcal{X}_-)$ (Grade Restriction Rule = Fourier-Mukai)
 Ballard-Favero-Katzarkov, Halpern-Leistner
- Baranovsky-Pecharich, ...

Theorem $2\Rightarrow Z_{D^2}([\mathcal{B}])_+$ and $Z_{D^2}(\mathrm{GR}[\mathcal{B}])_-$ are related by analytic continuation. $\mathrm{GR}\to \mathrm{symplectic}$ transform

Future work: discrepant transformation, general *G*.