Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twisted Shklyarov pairings and applications

Shaoyun Bai Simons Center for Geometry and Physics

January 24, 2023

(Based on joint work in progress with Paul Seidel)

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main construction in a toy model

Fixed point Floer cohomology Twisted Shklyarov pairing A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications Collapsing critical values

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model Fixed point Floer cohomology

Twisted Shklyarov pairing A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications

Collapsing critical values

Main construction in a toy model OOO OOOO OOOO Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other applications

Fixed point Floer cohomology

• (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.

Other applications

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.
- $\forall x \in Fix(\phi)$, $det(D\phi_x id) \neq 0 \Rightarrow$ only finitely many fixed points.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.
- $\forall x \in Fix(\phi)$, $det(D\phi_x id) \neq 0 \Rightarrow$ only finitely many fixed points.
- $CF^*(\phi) := \bigoplus_{x \in Fix(\phi)} \mathbb{C}x$, $\mathbb{Z}/2$ -graded.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.
- $\forall x \in Fix(\phi)$, $det(D\phi_x id) \neq 0 \Rightarrow$ only finitely many fixed points.
- $CF^*(\phi) := \bigoplus_{x \in Fix(\phi)} \mathbb{C}x$, $\mathbb{Z}/2$ -graded.
- Choose $J_t, t \in \mathbb{R}$ compatible, $\phi^* J_{t+1} = J_t$.

Other applications

Fixed point Floer cohomology

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.
- $\forall x \in Fix(\phi)$, $det(D\phi_x id) \neq 0 \Rightarrow$ only finitely many fixed points.
- $CF^*(\phi) := \bigoplus_{x \in Fix(\phi)} \mathbb{C}x$, $\mathbb{Z}/2$ -graded.
- Choose $J_t, t \in \mathbb{R}$ compatible, $\phi^* J_{t+1} = J_t$.
- Count $u: \mathbb{R}^2_{s,t} \to M$

$$\phi \circ u(t+1,s) = u(t,s), \quad \partial_s u + J_t(u)\partial_t u = 0$$

to define differential on $CF^*(\phi)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fixed point Floer cohomology

- (M^{2n}, ω) , closed, monotone: $[\omega] = c_1(M)$.
- $\phi: M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^* \omega = \omega$.
- $\forall x \in Fix(\phi)$, $det(D\phi_x id) \neq 0 \Rightarrow$ only finitely many fixed points.
- $CF^*(\phi) := \bigoplus_{x \in Fix(\phi)} \mathbb{C}x$, $\mathbb{Z}/2$ -graded.
- Choose $J_t, t \in \mathbb{R}$ compatible, $\phi^* J_{t+1} = J_t$.
- Count $u: \mathbb{R}^2_{s,t} \to M$

$$\phi \circ u(t+1,s) = u(t,s), \quad \partial_s u + J_t(u)\partial_t u = 0$$

to define differential on $CF^*(\phi)$.

Output: fixed point Floer cohomology HF*(φ).

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some algebraic structures

Other applications 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Some algebraic structures

Poincaré type pairing

$$HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C},$$

nondegenerate, coincides with the Poincaré pairing on $QH^*(M) = H^*(M)$ for $\phi = id$.

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some algebraic structures

Poincaré type pairing

$$HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C},$$

nondegenerate, coincides with the Poincaré pairing on $QH^*(M) = H^*(M)$ for $\phi = id$.

• Conjugation isomorphism: ψ symplectic automorphism, then

$$HF^*(\phi) \xrightarrow{\sim} HF^*(\psi\phi\psi^{-1}).$$

Other applications 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some algebraic structures

Poincaré type pairing

$$HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C},$$

nondegenerate, coincides with the Poincaré pairing on $QH^*(M) = H^*(M)$ for $\phi = id$.

• Conjugation isomorphism: ψ symplectic automorphism, then

$$HF^*(\phi) \xrightarrow{\sim} HF^*(\psi\phi\psi^{-1}).$$

• \Rightarrow $HF^*(\phi^r)$ admits a \mathbb{Z}/r -action induced by conjugation with ϕ .

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model

Fixed point Floer cohomology

Twisted Shklyarov pairing

A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications

Collapsing critical values

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Twisted Hochschild homology

• \mathfrak{F} : strictly proper A_{∞} category over \mathbb{C} , $\mathbb{Z}/2$ -graded.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twisted Hochschild homology

F: strictly proper A_∞ category over C, Z/2-graded.
 ⇒ ∀X, Y ∈ Ob(𝔅), 𝔅(X, Y) is a finite-dimensional Z/2-graded vector space over C.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- *F*: strictly proper A_∞ category over C, Z/2-graded.
 ⇒ ∀X, Y ∈ Ob(𝔅), 𝔅(X, Y) is a finite-dimensional Z/2-graded vector space over C.
- $\Phi : \mathfrak{F} \to \mathfrak{F}$ strict A_{∞} automorphism.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- *F*: strictly proper A_∞ category over C, Z/2-graded.
 ⇒ ∀X, Y ∈ Ob(𝔅), 𝔅(X, Y) is a finite-dimensional Z/2-graded vector space over C.
- Φ : 𝔅 → 𝔅 strict A_∞ automorphism.
 ⇒ an A_∞ functor with Φ^k = 0, ∀k ≥ 2, Φ¹ is an isomorphism of graded vector spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *F*: strictly proper A_∞ category over C, Z/2-graded.
 ⇒ ∀X, Y ∈ Ob(F), F(X, Y) is a finite-dimensional Z/2-graded vector space over C.
- Φ : 𝔅 → 𝔅 strict A_∞ automorphism.
 ⇒ an A_∞ functor with Φ^k = 0, ∀k ≥ 2, Φ¹ is an isomorphism of graded vector spaces.
- Example: F = monotone Fukaya category of (M, ω),
 Φ = automorphism of F induced by φ, which can be made strict by formally introducing more objects in F.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twisted Hochschild homology

• Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0,...,L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0, \dots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0).$
- Differential: bar differential, only using μ^k_F, with (co)homology denoted by HH_{*}(F, Φ).

Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0, \dots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0).$
- Differential: bar differential, only using μ^k_F, with (co)homology denoted by HH_{*}(F, Φ).

Proposition

There exists a bilinear pairing

$$\langle -, - \rangle_{\Phi} : HH_*(\mathfrak{F}, \Phi) \otimes HH_{-*}(\mathfrak{F}, \Phi^{-1}) \to \mathbb{C}.$$

If \mathfrak{F} is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH_*(\mathfrak{F}, \Phi^r)$ admits a \mathbb{Z}/r -action which is generated by conjugation with Φ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0, \dots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0).$
- Differential: bar differential, only using μ^k_F, with (co)homology denoted by HH_{*}(F, Φ).

Proposition

There exists a bilinear pairing

$$\langle -, - \rangle_{\Phi} : HH_*(\mathfrak{F}, \Phi) \otimes HH_{-*}(\mathfrak{F}, \Phi^{-1}) \to \mathbb{C}.$$

If \mathfrak{F} is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH_*(\mathfrak{F}, \Phi^r)$ admits a \mathbb{Z}/r -action which is generated by conjugation with Φ .

• The pairing generalizes the pairing defined by Shklyarov for $\Phi = id$.

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Twisted Shklyarov pairing

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Twisted Shklyarov pairing

 The construction of (-, -)_Φ relies on using the diagonal bimodule to construct an element in HH_{*}(𝔅, Φ) ⊗ HH_{-*}(𝔅, Φ⁻¹).

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twisted Shklyarov pairing

- The construction of (-, -)_Φ relies on using the diagonal bimodule to construct an element in HH_{*}(𝔅, Φ) ⊗ HH_{-*}(𝔅, Φ⁻¹).
- The proof of the nondegeneracy is a generalization of the snake relation in the presence of an automorphism.

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

Twisted Shklyarov pairing

- The construction of (−, −)_Φ relies on using the diagonal bimodule to construct an element in HH_{*}(𝔅, Φ) ⊗ HH_{-*}(𝔅, Φ⁻¹).
- The proof of the nondegeneracy is a generalization of the snake relation in the presence of an automorphism.
- Here is an explicit formula:

$$\begin{array}{l} \langle -, - \rangle_{\Phi} : CC_{*}(\mathcal{F}, \Phi) \otimes CC_{-*}(\mathcal{F}, \Phi^{-1}) \longrightarrow \mathbb{C}, \\ \langle a_{m} \otimes \cdots \otimes a_{1} \otimes \underline{a}_{0}, b_{n} \otimes \cdots \otimes b_{1} \otimes \underline{b}_{0} \rangle_{\Phi} \\ = \sum_{ijkl} \operatorname{Str}(y \mapsto \pm \mu_{\mathcal{F}}^{i-j-k+l+m+2}(a_{i}, \dots, \underline{a}_{0}, \Phi a_{m}, \dots, \Phi a_{k+1}, \\ \mu_{\mathcal{F}}^{-i+j+k-l+n+2}(\Phi a_{k}, \dots, \Phi a_{i+1}, \Phi y, \Phi b_{j}, \dots, \Phi b_{1}, \Phi \underline{b}_{0}, \\ b_{n}, \dots, b_{l+1}), b_{l}, \dots, b_{j+1}) \Big). \end{array}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twisted Shklyarov pairing

• For length 1 Hochschild chains, the pairing is reduced to

$$\begin{split} \mathfrak{F}(\Phi(L_0),L_0)\otimes \mathfrak{F}(\Phi^{-1}(L_1),L_1) \to \mathbb{C} \\ \underline{a}_0\otimes \underline{b}_0 \mapsto \pm \mathrm{Str}(y\mapsto \mu^2(\underline{a}_0,\mu^2(\Phi y,\Phi \underline{b}_0))), \end{split}$$

where the super-trace is taken over $\mathcal{F}(L_0, L_1)$.

Other applications

Twisted Shklyarov pairing

• For length 1 Hochschild chains, the pairing is reduced to

$$\mathcal{F}(\Phi(L_0), L_0) \otimes \mathcal{F}(\Phi^{-1}(L_1), L_1) \to \mathbb{C}$$

 $\underline{a}_0 \otimes \underline{b}_0 \mapsto \pm \mathrm{Str}(y \mapsto \mu^2(\underline{a}_0, \mu^2(\Phi y, \Phi \underline{b}_0))),$

where the super-trace is taken over $\mathcal{F}(L_0, L_1)$.

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model

Fixed point Floer cohomology Twisted Shklyarov pairing

A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications

Collapsing critical values

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Twisted open-closed string map

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twisted open-closed string map

Proposition

For $\mathfrak{F} = \mathfrak{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_*(\mathfrak{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Twisted open-closed string map

Proposition

For $\mathfrak{F} = \mathfrak{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_*(\mathfrak{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Twisted open-closed string map

Proposition

For $\mathfrak{F} = \mathfrak{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_*(\mathfrak{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.

Corollary

If \mathfrak{F} is homologically smooth, $OC(\phi)$ is injective.

Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

A Cardy relation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Main construction in a toy model ○○○ ○○○○ ○○○○ Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Some further remarks on $OC(\phi)$

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Some further remarks on $OC(\phi)$

• $OC(\phi^r) : HH_*(\mathcal{F}, \Phi^r) \to HF^{n+*}(\phi^r)$ is \mathbb{Z}/r -equivariant.

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some further remarks on $OC(\phi)$

- $OC(\phi^r) : HH_*(\mathfrak{F}, \Phi^r) \to HF^{n+*}(\phi^r)$ is \mathbb{Z}/r -equivariant.
- For (M, ω) monotone, 𝔅(M, ω) is decomposed into smaller pieces according to the value of the disc potential. All the above constructions "respect" such a decomposition.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some further remarks on $OC(\phi)$

- $OC(\phi^r) : HH_*(\mathfrak{F}, \Phi^r) \to HF^{n+*}(\phi^r)$ is \mathbb{Z}/r -equivariant.
- For (M, ω) monotone, 𝔅(M, ω) is decomposed into smaller pieces according to the value of the disc potential. All the above constructions "respect" such a decomposition.
- An interesting question: replace Φ by Lagrangian correspondences.

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model

Fixed point Floer cohomology Twisted Shklyarov pairing A Cardy relation

Lefschetz fibrations and noncommutative divisor Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications

Collapsing critical values

Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lefschetz fibrations

Other applications

Lefschetz fibrations

• Let $\pi: E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lefschetz fibrations

- Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.
- $\mu: F \to F$ global monodromy: it's compactly supported, and $\exists G_{\phi}: F \to F$ such that $\phi^*\theta \theta = dG_{\phi}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lefschetz fibrations

- Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.
- $\mu: F \to F$ global monodromy: it's compactly supported, and $\exists G_{\phi}: F \to F$ such that $\phi^*\theta - \theta = dG_{\phi}$.
- The Hamiltonian

$$H^{\mathrm{rot}}: (\mathbb{C}, rac{\sqrt{-1}}{2} dz \wedge d\overline{z}) o \mathbb{R}$$

 $z \mapsto \pi |z|^2$

defines a Hamiltonian $H^{\text{rot}} \circ \pi : E \to \mathbb{R}$.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lefschetz fibrations

- Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.
- $\mu: F \to F$ global monodromy: it's compactly supported, and $\exists G_{\phi}: F \to F$ such that $\phi^* \theta \theta = dG_{\phi}$.
- The Hamiltonian

$$H^{\mathsf{rot}}: (\mathbb{C}, rac{\sqrt{-1}}{2} dz \wedge d\overline{z}) o \mathbb{R}$$

 $z \mapsto \pi |z|^2$

defines a Hamiltonian $H^{\text{rot}} \circ \pi : E \to \mathbb{R}$.

 The associated Hamiltonian diffeomorphism is equal to identity viewed from C, and restricts to μ on each fiber over the complement of a compact subset.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{rot} \circ \pi$?

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{rot} \circ \pi$?

• Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{rot} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{rot} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.
- Define Hamiltonian Floer cohomology:

$$HF^*(E,1) := HF^*(H^{rot} \circ \pi \text{ perturbed by } A \cdot \operatorname{Re}(z))$$

 $HF^*(E, 1 \pm \frac{1}{2}) := HF^*(H^{rot} \circ \pi \text{ perturbed by } \pm \frac{1}{2} \cdot |z|^2).$

Other applications

Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{rot} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.
- Define Hamiltonian Floer cohomology:

$$HF^*(E,1) := HF^*(H^{rot} \circ \pi \text{ perturbed by } A \cdot \operatorname{Re}(z))$$

 $HF^*(E,1\pm \frac{1}{2}) := HF^*(H^{rot} \circ \pi \text{ perturbed by } \pm \frac{1}{2} \cdot |z|^2).$

Proposition

There exist long exact sequences

$$\cdots \to HF^*(E, \frac{1}{2}) \to HF^*(E, 1) \to HF^{*-1}(\mu) \to \cdots$$
$$\cdots \to HF^*(E, 1) \to HF^*(E, 1 + \frac{1}{2}) \to HF^*(\mu) \to \cdots$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Iterating the monodromy

Lefschetz fibrations and noncommutative divisor

Other applications

Iterating the monodromy

More generally, we can consider rH^{rot} ∘ π for r ∈ Z, and Floer cohomology groups HF*(E, r) and HF*(E, r ± 1/2).

Lefschetz fibrations and noncommutative divisor

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Iterating the monodromy

- More generally, we can consider rH^{rot} ∘ π for r ∈ Z, and Floer cohomology groups HF*(E, r) and HF*(E, r ± 1/2).
- They fit into long exact sequences

$$\cdots \to HF^*(E, r - \frac{1}{2}) \to HF^*(E, r) \to HF^{*-1}(\mu^r) \to \cdots$$
$$\cdots \to HF^*(E, r) \to HF^*(E, r + \frac{1}{2}) \to HF^*(\mu^r) \to \cdots$$

Lefschetz fibrations and noncommutative divisor

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Iterating the monodromy

- More generally, we can consider rH^{rot} ∘ π for r ∈ Z, and Floer cohomology groups HF*(E, r) and HF*(E, r ± 1/2).
- They fit into long exact sequences

$$\cdots \to HF^*(E, r - \frac{1}{2}) \to HF^*(E, r) \to HF^{*-1}(\mu^r) \to \cdots$$
$$\cdots \to HF^*(E, r) \to HF^*(E, r + \frac{1}{2}) \to HF^*(\mu^r) \to \cdots$$

Proposition

There exists a nondegenerate pairing

$$\langle -, - \rangle_r : HF^*(E, r) \otimes HF^{2n-*}(E, -r) \to \mathbb{C}.$$

Lefschetz fibrations and noncommutative divisor

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Iterating the monodromy

- More generally, we can consider rH^{rot} ∘ π for r ∈ Z, and Floer cohomology groups HF*(E, r) and HF*(E, r ± 1/2).
- They fit into long exact sequences

$$\cdots \to HF^*(E, r - \frac{1}{2}) \to HF^*(E, r) \to HF^{*-1}(\mu^r) \to \cdots$$
$$\cdots \to HF^*(E, r) \to HF^*(E, r + \frac{1}{2}) \to HF^*(\mu^r) \to \cdots$$

Proposition

There exists a nondegenerate pairing

$$\langle -,-\rangle_r:HF^*(E,r)\otimes HF^{2n-*}(E,-r)\to\mathbb{C}.$$

For each $r \in \mathbb{Z}_{\geq 1}$, $HF^*(E, r)$ admits a \mathbb{Z}/r -action, so that $HF^*(E, r) \rightarrow HF^{*-1}(\mu^r)$ is \mathbb{Z}/r -equivariant.

Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fukaya-Seidel category and Serre functor

Other applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fukaya-Seidel category and Serre functor

Let A be the Fukaya–Seidel category (over C) of π : E → C (with objects all Lefschetz thimbles).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fukaya-Seidel category and Serre functor

Let A be the Fukaya–Seidel category (over C) of π : E → C (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)

The Hamiltonian diffeomorphism defined by $H^{rot} \circ \pi$ (perturbed by $A \cdot Re(z)$) induces the inverse Serre functor S^{-1} on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fukaya-Seidel category and Serre functor

Let A be the Fukaya–Seidel category (over C) of π : E → C (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)

The Hamiltonian diffeomorphism defined by $H^{rot} \circ \pi$ (perturbed by $A \cdot Re(z)$) induces the inverse Serre functor S^{-1} on A.

Recall: A(SX, Y) ≅ A(Y, X)[∨], S represents the linear dual bimodule A[∨].

Fukaya-Seidel category and Serre functor

Let A be the Fukaya–Seidel category (over C) of π : E → C (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich-Seidel)

The Hamiltonian diffeomorphism defined by $H^{rot} \circ \pi$ (perturbed by $A \cdot Re(z)$) induces the inverse Serre functor S^{-1} on A.

- Recall: A(SX, Y) ≅ A(Y, X)[∨], S represents the linear dual bimodule A[∨].
- Here $\mathcal{A}^{\vee}(X, Y) = \operatorname{Hom}(\mathcal{A}(X, Y), \mathbb{C})$, and

 $\langle \mu_{\mathcal{A}^{\vee}}(a_s,\ldots,a_1,\pi,b_r,\ldots,b_1),p\rangle = \pm \langle \pi,\mu^{r+1+s}(b_r,\ldots,b_1,p,a_s,\ldots,a_1)\rangle.$

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Twisted open-closed maps for Lefschetz fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twisted open-closed maps for Lefschetz fibrations

Theorem (B-Seidel)

For each $r\in\mathbb{Z},$ there exists a $\mathbb{Z}/r\text{-equivariant}$ twisted open-closed string map

$$OC(r): HH_*(\mathcal{A}, (\mathcal{A}^{\vee})^{\otimes r}) \to HF^*(E, -r)[n(1+r)]$$

such that the following diagram commutes

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Twisted open-closed maps for Lefschetz fibrations

Theorem (B-Seidel)

For each $r\in\mathbb{Z},$ there exists a $\mathbb{Z}/r\text{-equivariant}$ twisted open-closed string map

$$OC(r): HH_*(\mathcal{A}, (\mathcal{A}^{\vee})^{\otimes r}) \to HF^*(E, -r)[n(1+r)]$$

such that the following diagram commutes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with *J*-holomorphic curves (cf. Seidel's Lefschetz IV and IV 1/2).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with *J*-holomorphic curves (cf. Seidel's Lefschetz IV and IV 1/2).

Proposition

A is homologically smooth.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with *J*-holomorphic curves (cf. Seidel's Lefschetz IV and IV 1/2).

Proposition

 ${\mathcal A}$ is homologically smooth.

• A distinguished basis defines a directed category, which has "automatic" smoothness. The point is that *all* Lefschetz thimbles are generated by the ones from a distinguished basis.

Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with *J*-holomorphic curves (cf. Seidel's Lefschetz IV and IV 1/2).

Proposition

 ${\mathcal A}$ is homologically smooth.

• A distinguished basis defines a directed category, which has "automatic" smoothness. The point is that *all* Lefschetz thimbles are generated by the ones from a distinguished basis.

Corollary

 $\forall r \in \mathbb{Z}, \ OC(r) : HH_*(\mathcal{A}, (\mathcal{A}^{\vee})^{\otimes r}) \to HF^*(E, -r)[n(1+r)] \ \text{is injective}.$

Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with *J*-holomorphic curves (cf. Seidel's Lefschetz IV and IV 1/2).

Proposition

 ${\mathcal A}$ is homologically smooth.

• A distinguished basis defines a directed category, which has "automatic" smoothness. The point is that *all* Lefschetz thimbles are generated by the ones from a distinguished basis.

Corollary

 $\forall r \in \mathbb{Z}, \ OC(r) : HH_*(\mathcal{A}, (\mathcal{A}^{\vee})^{\otimes r}) \to HF^*(E, -r)[n(1+r)] \ \text{is injective}.$

• A conjecture of Seidel expects it to be an isomorphism.

Lefschetz fibrations and noncommutative divisor

Other applications 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model

Fixed point Floer cohomology Twisted Shklyarov pairing A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications

Main construction in a toy model 000 00000 0000 Other applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Noncommutative anti-canonical divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Noncommutative anti-canonical divisor

Question

How to construct an A_{∞} category \mathcal{B} , such that $\mathcal{A} \subset \mathcal{B}$ is a full subcategory, and $\mathcal{B}/\mathcal{A} \cong \mathcal{A}^{\vee}[1-n]$ as A_{∞} bimodules?

Noncommutative anti-canonical divisor

Question

How to construct an A_{∞} category \mathbb{B} , such that $\mathcal{A} \subset \mathbb{B}$ is a full subcategory, and $\mathbb{B}/\mathcal{A} \cong \mathcal{A}^{\vee}[1-n]$ as A_{∞} bimodules?

• At the level of morphisms, $\mathcal{B}(X, Y) = \mathcal{A}(X, Y) \oplus \mathcal{A}^{\vee}(X, Y)[1 - n]$. The "0-th" order information is contained in μ_A^k and $\mu_{A^{\vee}}^{r|1|s}$.

Noncommutative anti-canonical divisor

Question

How to construct an A_{∞} category \mathbb{B} , such that $\mathcal{A} \subset \mathbb{B}$ is a full subcategory, and $\mathbb{B}/\mathcal{A} \cong \mathcal{A}^{\vee}[1-n]$ as A_{∞} bimodules?

- At the level of morphisms, $\mathcal{B}(X, Y) = \mathcal{A}(X, Y) \oplus \mathcal{A}^{\vee}(X, Y)[1 n]$. The "0-th" order information is contained in $\mu_{\mathcal{A}}^k$ and $\mu_{\mathcal{A}^{\vee}}^{r|1|s}$.
- The "first" order information is a bimodule homomorphism

$$\theta: T(\mathcal{A}[1]) \otimes \mathcal{A}^{\vee}[-n] \otimes T(\mathcal{A}[1]) \to \mathcal{A},$$

which defines a class in $H^0(\hom(\mathcal{A}^{\vee}[-n],\mathcal{A})) \cong HH_*(\mathcal{A}, \mathbb{S}^{-1}).$

Noncommutative anti-canonical divisor

Question

How to construct an A_{∞} category \mathbb{B} , such that $\mathcal{A} \subset \mathbb{B}$ is a full subcategory, and $\mathbb{B}/\mathcal{A} \cong \mathcal{A}^{\vee}[1-n]$ as A_{∞} bimodules?

- At the level of morphisms, $\mathcal{B}(X, Y) = \mathcal{A}(X, Y) \oplus \mathcal{A}^{\vee}(X, Y)[1 n]$. The "0-th" order information is contained in $\mu_{\mathcal{A}}^k$ and $\mu_{\mathcal{A}^{\vee}}^{r|1|s}$.
- The "first" order information is a bimodule homomorphism

$$\theta: T(\mathcal{A}[1]) \otimes \mathcal{A}^{\vee}[-n] \otimes T(\mathcal{A}[1]) \to \mathcal{A},$$

which defines a class in $H^0(\hom(\mathcal{A}^{\vee}[-n],\mathcal{A})) \cong HH_*(\mathcal{A}, \mathbb{S}^{-1}).$

• The "higher" information is encoded in

$$H^*(\mathsf{hom}((\mathcal{A}^{\vee})^{\otimes r},\mathcal{A}))^{\mathbb{Z}/(r+1)}\cong HH_*(\mathcal{A},\mathbb{S}^{-(r+1)})^{\mathbb{Z}/(r+1)}.$$

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Noncommutative anti-canonical divisor

Proposition

If $HH_*(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)}$ is supported on non-negative degrees, an A_{∞} structure on $\mathcal{A} \oplus \mathcal{A}^{\vee}[1-n]$ is uniquely determined by the first-order information $\theta \in HH_*(\mathcal{A}, S^{-1})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Noncommutative anti-canonical divisor

Proposition

If $HH_*(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)}$ is supported on non-negative degrees, an A_{∞} structure on $\mathcal{A} \oplus \mathcal{A}^{\vee}[1-n]$ is uniquely determined by the first-order information $\theta \in HH_*(\mathcal{A}, S^{-1})$.

• The element θ can be viewed as a "section of the anti-canonical bundle."

Noncommutative anti-canonical divisor

Proposition

If $HH_*(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)}$ is supported on non-negative degrees, an A_{∞} structure on $\mathcal{A} \oplus \mathcal{A}^{\vee}[1-n]$ is uniquely determined by the first-order information $\theta \in HH_*(\mathcal{A}, S^{-1})$.

• The element θ can be viewed as a "section of the anti-canonical bundle."

Lemma

If $\pi : E \to \mathbb{C}$ is constructed by removing the fiber over ∞ of an anti-canonical Lefschetz pencil, then $HF^*(E, r)$ is supported on non-negative degrees.

Noncommutative anti-canonical divisor

Proposition

If $HH_*(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)}$ is supported on non-negative degrees, an A_{∞} structure on $\mathcal{A} \oplus \mathcal{A}^{\vee}[1-n]$ is uniquely determined by the first-order information $\theta \in HH_*(\mathcal{A}, S^{-1})$.

• The element θ can be viewed as a "section of the anti-canonical bundle."

Lemma

If $\pi : E \to \mathbb{C}$ is constructed by removing the fiber over ∞ of an anti-canonical Lefschetz pencil, then $HF^*(E, r)$ is supported on non-negative degrees.

 Because OC(r) is injective, we conclude that HH_{*}(A, S^{-(r+1)}) is supported on non-negative degrees. The Z/r-equivariance of OC(r) implies that HH_{*}(A, S^{-(r+1)})^{Z/(r+1)} satisfies the same property. Main construction in a toy model 000 00000 0000 Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Mirror symmetry implications

Other applications

Mirror symmetry implications

 For π : E → C anti-canonical, Fukaya category of the fiber B and the restriction functor A → B define a noncommutative anti-canonical divisor (cf. Seidel's Lefschetz VI).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mirror symmetry implications

- For π : E → C anti-canonical, Fukaya category of the fiber B and the restriction functor A → B define a noncommutative anti-canonical divisor (cf. Seidel's Lefschetz VI).
- The above discussion shows that to reconstruct ${\mathcal B}$ from ${\mathcal A},$ we just need a natural transformation

$$\mathbb{S} \to \mathsf{id},$$

which is in fact realized as the identity element in $HF^*(E, 1)$ under the open-closed map.

Lefschetz fibrations and noncommutative divisor ○○○○○○ ○○○● Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mirror symmetry implications

- For π : E → C anti-canonical, Fukaya category of the fiber B and the restriction functor A → B define a noncommutative anti-canonical divisor (cf. Seidel's Lefschetz VI).
- The above discussion shows that to reconstruct ${\mathcal B}$ from ${\mathcal A},$ we just need a natural transformation

$$\mathbb{S} \to \mathsf{id},$$

which is in fact realized as the identity element in $HF^*(E,1)$ under the open-closed map.

• The same actually holds for the deformation of the pair $\overline{\mathcal{A}} \to \overline{\mathcal{B}}$ induced by adding back the base locus.

Lefschetz fibrations and noncommutative divisor ○○○○○○ ○○○● Other applications

Mirror symmetry implications

- For π : E → C anti-canonical, Fukaya category of the fiber B and the restriction functor A → B define a noncommutative anti-canonical divisor (cf. Seidel's Lefschetz VI).
- The above discussion shows that to reconstruct ${\mathcal B}$ from ${\mathcal A},$ we just need a natural transformation

$$\mathbb{S} \to \mathsf{id},$$

which is in fact realized as the identity element in $HF^*(E,1)$ under the open-closed map.

- The same actually holds for the deformation of the pair $\overline{A} \to \overline{B}$ induced by adding back the base locus.
- This is a step towards showing that the compact Fukaya category of the Calabi–Yau hypersurface $\overline{\mathcal{B}}$ is actually defined over a polynomial ring after applying a mirror map.

Main construction in a toy model 000 00000 0000 Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications •00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Main construction in a toy model

Fixed point Floer cohomology Twisted Shklyarov pairing A Cardy relation

Lefschetz fibrations and noncommutative divisor

Hamiltonian Floer cohomology of the global monodromy Noncommutative anti-canonical divisor

Other applications Collapsing critical values Main construction in a toy model 000 00000 0000 Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Isolated singularities

Other applications

Isolated singularities

• Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
- The monodromy surrounding 0, $\mu: F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
- The monodromy surrounding 0, $\mu : F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let *m* be the multiplicity of *f* and 0. Then for any r < m, the fixed point Floer cohomology $HF^*(\mu^r) = 0$.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
- The monodromy surrounding 0, $\mu: F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let *m* be the multiplicity of *f* and 0. Then for any r < m, the fixed point Floer cohomology $HF^*(\mu^r) = 0$.

• Using the long exact sequence

$$\cdots \to HF^*(E,\frac{1}{2}) \cong HF^*(\mathbb{C}^n) \to HF^*(E,1) \to HF^{*-1}(\mu) \to \cdots,$$

we know rank $HF^*(E, 1) \leq 1$.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
- The monodromy surrounding 0, $\mu: F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let *m* be the multiplicity of *f* and 0. Then for any r < m, the fixed point Floer cohomology $HF^*(\mu^r) = 0$.

• Using the long exact sequence

$$\cdots \to HF^*(E,\frac{1}{2}) \cong HF^*(\mathbb{C}^n) \to HF^*(E,1) \to HF^{*-1}(\mu) \to \cdots,$$

we know rank $HF^*(E, 1) \leq 1$.

 After Morsifying *f*, the associated Fukaya–Seidel category is nontrivial ⇒ *HH*^{*}(*A*, *A*) ≅ *HH*_{*+n}(*A*, S⁻¹) ≠ 0. Main construction in a toy model 000 00000 0000 Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

Collapsing critical values

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Collapsing critical values

• Using the injectivity of OC(-1), we see that $HF^*(E, 1)$ is exactly 1-dimensional.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Collapsing critical values

- Using the injectivity of OC(-1), we see that $HF^*(E, 1)$ is exactly 1-dimensional.
- This simple computation already gives some interesting applications.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collapsing critical values

- Using the injectivity of OC(-1), we see that $HF^*(E,1)$ is exactly 1-dimensional.
- This simple computation already gives some interesting applications.

Example

The holomorphic map

$$(\mathbb{C}^*)^n \to \mathbb{C}$$

 $(z_1, \ldots, z_n) \mapsto z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}$

cannot be deformed to a regular function with isolated singularities but with fewer critical values.

Other applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Collapsing critical values

• Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collapsing critical values

- Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.
- We can define the cup-length of HH*(A, A) (denoted by cl(A)) to be the maximal r ∈ Z≥0 such that ∃a1,..., ar ∈ HH*(A, A) nilpotent and

 $a_1 \cup \cdots \cup a_r \neq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collapsing critical values

- Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.
- We can define the cup-length of HH*(A, A) (denoted by cl(A)) to be the maximal r ∈ Z_{≥0} such that ∃a₁,..., a_r ∈ HH*(A, A) nilpotent and

$$a_1 \cup \cdots \cup a_r \neq 0.$$

Homological mirror symmetry tells us

$$\mathfrak{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b \mathsf{Coh}(\mathbb{CP}^n).$$

Collapsing critical values

- Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.
- We can define the cup-length of HH*(A, A) (denoted by cl(A)) to be the maximal r ∈ Z_{≥0} such that ∃a₁,..., a_r ∈ HH*(A, A) nilpotent and

$$a_1 \cup \cdots \cup a_r \neq 0.$$

Homological mirror symmetry tells us

$$\mathcal{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b \mathsf{Coh}(\mathbb{CP}^n).$$

For A = D^bCoh(CPⁿ), we have cl(A) ≥ n by looking at n linearly independent holomorphic vector field on CPⁿ generated by the torus action.

Other applications

Collapsing critical values

If A = 𝔅(π) for π : E → C being a Morsification of an isolated singularity, we know cl(A) = 0.

Other applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collapsing critical values

If A = 𝔅(π) for π : E → C being a Morsification of an isolated singularity, we know cl(A) = 0.

Lemma

Suppose A admits a semi-orthogonal decomposition

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,$$

then $cl(\mathcal{A}) \leq \sum cl(\mathcal{A}_i) + m - 1$.

Other applications

Collapsing critical values

If A = 𝔅(π) for π : E → C being a Morsification of an isolated singularity, we know cl(A) = 0.

Lemma

Suppose A admits a semi-orthogonal decomposition

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,$$

then $cl(\mathcal{A}) \leq \sum cl(\mathcal{A}_i) + m - 1$.

• If we could collapse the critical values of $z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}$, we would obtain a semi-orthogonal decomposition of

$$\mathfrak{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b \mathsf{Coh}(\mathbb{CP}^n)$$

of length $\leq n - 1$.

Other applications

Collapsing critical values

If A = 𝔅(π) for π : E → C being a Morsification of an isolated singularity, we know cl(A) = 0.

Lemma

Suppose A admits a semi-orthogonal decomposition

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,$$

then $cl(\mathcal{A}) \leq \sum cl(\mathcal{A}_i) + m - 1$.

• If we could collapse the critical values of $z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}$, we would obtain a semi-orthogonal decomposition of

$$\mathfrak{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b \mathsf{Coh}(\mathbb{CP}^n)$$

of length $\leq n - 1$.

• This would imply its cup-length is $\leq n - 1 \Rightarrow$ contradiction!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Main construction in a toy model 000 00000 0000 Lefschetz fibrations and noncommutative divisor 0000000 0000 Other applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thanks for your attention!