Twisted Shklyarov pairings and applications

Shaoyun Bai
Simons Center for Geometry and Physics

January 24, 2023

(Based on joint work in progress with Paul Seidel)
Main construction in a toy model
- Fixed point Floer cohomology
- Twisted Shklyarov pairing
- A Cardy relation

Lefschetz fibrations and noncommutative divisor
- Hamiltonian Floer cohomology of the global monodromy
- Noncommutative anti-canonical divisor

Other applications
- Collapsing critical values
Table of Contents

Main construction in a toy model
 Fixed point Floer cohomology
 Twisted Shklyarov pairing
 A Cardy relation

Lefschetz fibrations and noncommutative divisor
 Hamiltonian Floer cohomology of the global monodromy
 Noncommutative anti-canonical divisor

Other applications
 Collapsing critical values
Fixed point Floer cohomology
Fixed point Floer cohomology

- \((M^{2n}, \omega)\), closed, monotone: \([\omega] = c_1(M)\).
Fixed point Floer cohomology

- \((M^{2n}, \omega)\), closed, monotone: \([\omega] = c_1(M)\).
- \(\phi : M \rightarrow M\) symplectic automorphism: \(\phi \in \text{Diff}(M)\) and \(\phi^*\omega = \omega\).
Fixed point Floer cohomology

- \((M^{2n}, \omega)\), closed, monotone: \([\omega] = c_1(M)\).
- \(\phi : M \to M\) symplectic automorphism: \(\phi \in \text{Diff}(M)\) and \(\phi^* \omega = \omega\).
- \(\forall x \in \text{Fix}(\phi), \det(D\phi_x - \text{id}) \neq 0 \Rightarrow \) only finitely many fixed points.
Fixed point Floer cohomology

- \((M^{2n}, \omega),\) closed, monotone: \([\omega] = c_1(M)\).
- \(\phi : M \to M\) symplectic automorphism: \(\phi \in \text{Diff}(M)\) and \(\phi^*\omega = \omega\).
- \(\forall x \in \text{Fix}(\phi), \det(D\phi_x - \text{id}) \neq 0 \Rightarrow \) only finitely many fixed points.
- \(\text{CF}^*(\phi) := \bigoplus_{x \in \text{Fix}(\phi)} \mathbb{C}x, \mathbb{Z}/2\)-graded.
Fixed point Floer cohomology

- \((M^{2n}, \omega)\), closed, monotone: \([\omega] = c_1(M)\).
- \(\phi : M \rightarrow M\) symplectic automorphism: \(\phi \in \text{Diff}(M)\) and \(\phi^* \omega = \omega\).
- \(\forall x \in \text{Fix}(\phi), \det(D\phi_x - \text{id}) \neq 0 \Rightarrow\) only finitely many fixed points.
- \(CF^*(\phi) := \bigoplus_{x \in \text{Fix}(\phi)} \mathbb{C}x, \mathbb{Z}/2\)-graded.
- Choose \(J_t, t \in \mathbb{R}\) compatible, \(\phi^* J_{t+1} = J_t\).
Fixed point Floer cohomology

- (M^{2n}, ω), closed, monotone: $[\omega] = c_1(M)$.
- $\phi : M \to M$ symplectic automorphism: $\phi \in \text{Diff}(M)$ and $\phi^*\omega = \omega$.
- $\forall x \in \text{Fix}(\phi), \det(D\phi_x - \text{id}) \neq 0 \Rightarrow$ only finitely many fixed points.
- $CF^*(\phi) := \bigoplus_{x \in \text{Fix}(\phi)} \mathbb{C}x$, $\mathbb{Z}/2$-graded.
- Choose $J_t, t \in \mathbb{R}$ compatible, $\phi^*J_{t+1} = J_t$.
- Count $u : \mathbb{R}^2_{s,t} \to M$
 \[
 \phi \circ u(t + 1, s) = u(t, s), \quad \partial_s u + J_t(u)\partial_t u = 0
 \]
 to define differential on $CF^*(\phi)$.
Fixed point Floer cohomology

- \((M^{2n}, \omega)\), closed, monotone: \([\omega] = c_1(M)\).
- \(\phi : M \to M\) symplectic automorphism: \(\phi \in \text{Diff}(M)\) and \(\phi^*\omega = \omega\).
- \(\forall x \in \text{Fix}(\phi), \det(D\phi_x - \text{id}) \neq 0 \Rightarrow \) only finitely many fixed points.
- \(\text{CF}^*(\phi) := \bigoplus_{x \in \text{Fix}(\phi)} \mathbb{C}x, \mathbb{Z}/2\)-graded.
- Choose \(J_t, t \in \mathbb{R}\) compatible, \(\phi^*J_{t+1} = J_t\).
- Count \(u : \mathbb{R}^2_{s,t} \to M\)

\[
\phi \circ u(t + 1, s) = u(t, s), \quad \partial_s u + J_t(u)\partial_t u = 0
\]

to define differential on \(\text{CF}^*(\phi)\).
- Output: fixed point Floer cohomology \(HF^*(\phi)\).
Some algebraic structures
Some algebraic structures

- Poincaré type pairing

\[HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C}, \]

nondegenerate, coincides with the Poincaré pairing on \(QH^*(M) = H^*(M) \) for \(\phi = \text{id} \).
Some algebraic structures

• Poincaré type pairing

\[HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C}, \]

nondegenerate, coincides with the Poincaré pairing on
\[QH^*(M) = H^*(M) \] for \(\phi = \text{id}. \)

• Conjugation isomorphism: \(\psi \) symplectic automorphism, then

\[HF^*(\phi) \xrightarrow{\sim} HF^*(\psi\phi\psi^{-1}). \]
Some algebraic structures

- Poincaré type pairing

\[HF^*(\phi) \otimes HF^{2n-*}(\phi^{-1}) \to \mathbb{C}, \]

nondegenerate, coincides with the Poincaré pairing on
\[QH^*(M) = H^*(M) \] for \(\phi = \text{id} \).

- Conjugation isomorphism: \(\psi \) symplectic automorphism, then

\[HF^*(\phi) \sim HF^*(\psi \phi \psi^{-1}). \]

- \(\Rightarrow HF^*(\phi^r) \) admits a \(\mathbb{Z}/r \)-action induced by conjugation with \(\phi \).
Table of Contents

Main construction in a toy model
 Fixed point Floer cohomology
 Twisted Shklyarov pairing
 A Cardy relation

Lefschetz fibrations and noncommutative divisor
 Hamiltonian Floer cohomology of the global monodromy
 Noncommutative anti-canonical divisor

Other applications
 Collapsing critical values
Twisted Hochschild homology
Twisted Hochschild homology

- \mathcal{F}: strictly proper A_∞ category over \mathbb{C}, $\mathbb{Z}/2$-graded.
Twisted Hochschild homology

• \mathcal{F}: strictly proper A_∞ category over \mathbb{C}, $\mathbb{Z}/2$-graded.
 $\Rightarrow \forall X, Y \in \text{Ob}(\mathcal{F}), \mathcal{F}(X, Y)$ is a finite-dimensional $\mathbb{Z}/2$-graded vector space over \mathbb{C}.
Twisted Hochschild homology

- \mathcal{F}: strictly proper A_∞ category over \mathbb{C}, $\mathbb{Z}/2$-graded.
 $\Rightarrow \forall X, Y \in \text{Ob}(\mathcal{F}), \mathcal{F}(X, Y)$ is a finite-dimensional $\mathbb{Z}/2$-graded vector space over \mathbb{C}.

- $\Phi : \mathcal{F} \to \mathcal{F}$ strict A_∞ automorphism.
Twisted Hochschild homology

- \mathcal{F}: strictly proper A_∞ category over \mathbb{C}, $\mathbb{Z}/2$-graded.
 $\Rightarrow \forall X, Y \in \text{Ob}(\mathcal{F}), \mathcal{F}(X, Y)$ is a finite-dimensional $\mathbb{Z}/2$-graded vector space over \mathbb{C}.

- $\Phi : \mathcal{F} \to \mathcal{F}$ strict A_∞ automorphism.
 \Rightarrow an A_∞ functor with $\Phi^k = 0, \forall k \geq 2$, Φ^1 is an isomorphism of graded vector spaces.
Twisted Hochschild homology

- \(\mathcal{F} \): strictly proper \(A_\infty \) category over \(\mathbb{C}, \mathbb{Z}/2 \)-graded.
 \(\Rightarrow \) \(\forall X, Y \in \text{Ob}(\mathcal{F}), \mathcal{F}(X, Y) \) is a finite-dimensional \(\mathbb{Z}/2 \)-graded vector space over \(\mathbb{C} \).

- \(\Phi : \mathcal{F} \to \mathcal{F} \) strict \(A_\infty \) automorphism.
 \(\Rightarrow \) an \(A_\infty \) functor with \(\Phi^k = 0, \forall k \geq 2 \), \(\Phi^1 \) is an isomorphism of graded vector spaces.

- Example: \(\mathcal{F} = \) monotone Fukaya category of \((M, \omega) \), \(\Phi = \) automorphism of \(\mathcal{F} \) induced by \(\phi \), which can be made strict by formally introducing more objects in \(\mathcal{F} \).
Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0, \ldots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0)$.

Differential: bar differential, only using $\mu_k \mathcal{F}$, with (co)homology denoted by $HH^*($\mathcal{F}, \Phi$).

Proposition
There exists a bilinear pairing $\langle - , - \rangle_{\Phi} : HH^*(\mathcal{F}, \Phi) \otimes HH_{-\ast}(\mathcal{F}, \Phi) \rightarrow \mathbb{C}$.

If \mathcal{F} is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH^*(\mathcal{F}, \Phi)^r$ admits a \mathbb{Z}/r-action which is generated by conjugation with Φ.

The pairing generalizes the pairing defined by Shklyarov for $\Phi = \text{id}$.
Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_*(\mathcal{F}, \Phi) := \bigoplus_{L_0, \ldots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0)$.
- Differential: bar differential, only using $\mu^k_{\mathcal{F}}$, with (co)homology denoted by $HH_*(\mathcal{F}, \Phi)$.

Proposition
There exists a bilinear pairing $\langle -,- \rangle_{\Phi} : HH_* (\mathcal{F}, \Phi) \otimes HH_{*-1} (\mathcal{F}, \Phi) \to \mathbb{C}$.
If \mathcal{F} is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH_* (\mathcal{F}, \Phi_r)$ admits a \mathbb{Z}/r-action which is generated by conjugation with Φ.
- The pairing generalizes the pairing defined by Shklyarov for $\Phi = \text{id}$.

Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_*(F, \Phi) := \bigoplus_{L_0, \ldots, L_k} F(L_{k-1}, L_k)[1] \otimes \cdots \otimes F(L_0, L_1)[1] \otimes F(\Phi(L_k), L_0)$.

- Differential: bar differential, only using μ^k_F, with (co)homology denoted by $HH_*(F, \Phi)$.

Proposition

There exists a bilinear pairing

$$\langle -, - \rangle_\Phi : HH_*(F, \Phi) \otimes HH_{-*}(F, \Phi^{-1}) \to \mathbb{C}.$$

If F is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH_*(F, \Phi^r)$ admits a \mathbb{Z}/r-action which is generated by conjugation with Φ.

Twisted Hochschild homology

- Twisted Hochschild chain complex $CC_\ast(\mathcal{F}, \Phi) := \bigoplus_{L_0, \ldots, L_k} \mathcal{F}(L_{k-1}, L_k)[1] \otimes \cdots \otimes \mathcal{F}(L_0, L_1)[1] \otimes \mathcal{F}(\Phi(L_k), L_0)$.

- Differential: bar differential, only using $\mu_k^\mathcal{F}$, with (co)homology denoted by $HH_\ast(\mathcal{F}, \Phi)$.

Proposition

There exists a bilinear pairing

$$\langle - , - \rangle_\Phi : HH_\ast(\mathcal{F}, \Phi) \otimes HH_{-\ast}(\mathcal{F}, \Phi^{-1}) \to \mathbb{C}.$$

If \mathcal{F} is homologically smooth, then it is nondegenerate. For $r \geq 1$, $HH_\ast(\mathcal{F}, \Phi^r)$ admits a \mathbb{Z}/r-action which is generated by conjugation with Φ.

- The pairing generalizes the pairing defined by Shklyarov for $\Phi = \text{id}$.

Twisted Shklyarov pairing
Twisted Shklyarov pairing

- The construction of $\langle -,- \rangle_\Phi$ relies on using the diagonal bimodule to construct an element in $HH_\ast(\mathcal{F}, \Phi) \otimes HH_{-\ast}(\mathcal{F}, \Phi^{-1})$.
Twisted Shklyarov pairing

- The construction of $\langle - , - \rangle_\Phi$ relies on using the diagonal bimodule to construct an element in $HH_* (\mathcal{F}, \Phi) \otimes HH_{-*} (\mathcal{F}, \Phi^{-1})$.

- The proof of the nondegeneracy is a generalization of the snake relation in the presence of an automorphism.
Twisted Shklyarov pairing

• The construction of $\langle -,- \rangle_\Phi$ relies on using the diagonal bimodule to construct an element in $HH_*(\mathcal{F}, \Phi) \otimes HH_{-*}(\mathcal{F}, \Phi^{-1})$.

• The proof of the nondegeneracy is a generalization of the snake relation in the presence of an automorphism.

• Here is an explicit formula:

$$\langle -,- \rangle_\Phi : CC_*(\mathcal{F}, \Phi) \otimes CC_{-*}(\mathcal{F}, \Phi^{-1}) \longrightarrow \mathbb{C},$$

$$\langle a_m \otimes \cdots \otimes a_1 \otimes a_0, b_n \otimes \cdots \otimes b_1 \otimes b_0 \rangle_\Phi$$

$$= \sum_{ijkl} \text{Str}(y \mapsto \pm \mu_{ij}^{i-j-k+l+m+2}(a_i, \ldots, a_0, \Phi a_m, \ldots, \Phi a_{k+1},$$

$$\mu_{ij}^{i+j+k-l+n+2}(\Phi a_k, \ldots, \Phi a_{i+1}, \Phi y, \Phi b_j, \ldots, \Phi b_1, \Phi b_0,$$

$$b_n, \ldots, b_{l+1}), b_l, \ldots, b_{j+1})).$$
Twisted Shklyarov pairing

• For length 1 Hochschild chains, the pairing is reduced to

\[\mathcal{F}(\Phi(L_0), L_0) \otimes \mathcal{F}(\Phi^{-1}(L_1), L_1) \to \mathbb{C} \]

\[a_0 \otimes b_0 \mapsto \pm \text{Str}(y \mapsto \mu^2(a_0, \mu^2(\Phi y, \Phi b_0))), \]

where the super-trace is taken over \(\mathcal{F}(L_0, L_1) \).
Twisted Shklyarov pairing

- For length 1 Hochschild chains, the pairing is reduced to

$$\mathcal{F}(\Phi(L_0), L_0) \otimes \mathcal{F}(\Phi^{-1}(L_1), L_1) \rightarrow \mathbb{C}$$

$$a_0 \otimes b_0 \mapsto \pm \text{Str}(y \mapsto \mu^2(a_0, \mu^2(\Phi y, \Phi b_0)))$$

where the super-trace is taken over $\mathcal{F}(L_0, L_1)$.
Table of Contents

Main construction in a toy model
 Fixed point Floer cohomology
 Twisted Shklyarov pairing
 A Cardy relation

Lefschetz fibrations and noncommutative divisor
 Hamiltonian Floer cohomology of the global monodromy
 Noncommutative anti-canonical divisor

Other applications
 Collapsing critical values
Twisted open-closed string map
Twisted open-closed string map

Proposition

For $\mathcal{F} = \mathcal{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_*(\mathcal{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.
Twisted open-closed string map

Proposition

For $\mathcal{F} = \mathcal{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_*(\mathcal{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.

\[
\begin{array}{ccc}
HH_*(\mathcal{F}, \Phi) \otimes HH_{-*}(\mathcal{F}, \Phi^{-1}) & \xrightarrow{\langle -,- \rangle_{\Phi}} & HH_*(\mathcal{F}, \Phi) \otimes HH_{-*}(\mathcal{F}, \Phi^{-1})\\
\downarrow & & \downarrow Poincaré\\
OC(\phi) \otimes OC(\phi^{-1}) & \xrightarrow{OC(\phi)} & \mathbb{C}\\
\end{array}
\]
Twisted open-closed string map

Proposition

For $\mathcal{F} = \mathcal{F}(M, \omega)$, and $\phi : (M, \omega) \to (M, \omega)$, there exists a twisted open-closed string map $OC(\phi) : HH_* (\mathcal{F}, \Phi) \to HF^{*+n}(\phi)$ making the following diagram commute.

\[
\begin{array}{ccc}
HH_* (\mathcal{F}, \Phi) \otimes HH_{-*} (\mathcal{F}, \Phi^{-1}) & \xrightarrow{\langle -, - \rangle_\phi} & C \\
OC(\phi) \otimes OC(\phi^{-1}) & \xrightarrow{\text{Poincaré}} & HF^{n+*} (\phi) \otimes HF^{n-*} (\phi^{-1})
\end{array}
\]

Corollary

If \mathcal{F} is homologically smooth, $OC(\phi)$ is injective.
A Cardy relation

Matched output in $CF^\star(\phi^\perp)$

Shifted by Φ

Str as matching with y

insert y

ϕ

b_0

\bar{a}_0

L_0

L_1

L_2

L_3

L_0'

L_1'
Some further remarks on $OC(\phi)$
Some further remarks on $OC(\phi)$

- $OC(\phi^r): HH_*(\mathcal{F}, \Phi^r) \to HF^{n+*}(\phi^r)$ is \mathbb{Z}/r-equivariant.
Some further remarks on $OC(\phi)$

- $OC(\phi^r) : HH_* (\mathcal{F}, \Phi^r) \rightarrow HF^{n+*}(\phi^r)$ is \mathbb{Z}/r-equivariant.
- For (M, ω) monotone, $\mathcal{F}(M, \omega)$ is decomposed into smaller pieces according to the value of the disc potential. All the above constructions “respect” such a decomposition.
Some further remarks on $OC(\phi)$

- $OC(\phi^r) : HH_* (\mathcal{F}, \Phi^r) \to HF^{n+*}(\phi^r)$ is \mathbb{Z}/r-equivariant.
- For (M, ω) monotone, $\mathcal{F}(M, \omega)$ is decomposed into smaller pieces according to the value of the disc potential. All the above constructions “respect” such a decomposition.
- An interesting question: replace Φ by Lagrangian correspondences.
Main construction in a toy model
 - Fixed point Floer cohomology
 - Twisted Shklyarov pairing
 - A Cardy relation

Lefschetz fibrations and noncommutative divisor
 - Hamiltonian Floer cohomology of the global monodromy
 - Noncommutative anti-canonical divisor

Other applications
 - Collapsing critical values
Lefschetz fibrations
Lefschetz fibrations

- Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.
Lefschetz fibrations

• Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.

• $\mu : F \to F$ global monodromy: it’s compactly supported, and $\exists G_\phi : F \to F$ such that $\phi^* \theta - \theta = dG_\phi$.
Lefschetz fibrations

• Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.

• $\mu : F \to F$ global monodromy: it’s compactly supported, and $\exists G_\phi : F \to F$ such that $\phi^* \theta - \theta = dG_\phi$.

• The Hamiltonian

$$H^{\text{rot}} : (\mathbb{C}, \frac{\sqrt{-1}}{2} dz \wedge d\bar{z}) \to \mathbb{R}$$

$$z \mapsto \pi |z|^2$$

defines a Hamiltonian $H^{\text{rot}} \circ \pi : E \to \mathbb{R}$.
Lefschetz fibrations

• Let $\pi : E \to \mathbb{C}$ be an exact symplectic Lefschetz fibration, with fiber (F, ω, θ) a Liouville domain.

• $\mu : F \to F$ global monodromy: it’s compactly supported, and $\exists G_\phi : F \to F$ such that $\phi^* \theta - \theta = dG_\phi$.

• The Hamiltonian

$$H^{\text{rot}} : (\mathbb{C}, \frac{\sqrt{-1}}{2} dz \wedge d\bar{z}) \to \mathbb{R}$$

$$z \mapsto \pi |z|^2$$

defines a Hamiltonian $H^{\text{rot}} \circ \pi : E \to \mathbb{R}$.

• The associated Hamiltonian diffeomorphism is equal to identity viewed from \mathbb{C}, and restricts to μ on each fiber over the complement of a compact subset.
Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{\text{rot}} \circ \pi$?
Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{\text{rot}} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
Question

How to define the Hamiltonian Floer cohomology of $H^{\text{rot}} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon|z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.
Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{\text{rot}} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.
- Define Hamiltonian Floer cohomology:

 $$HF^*(E, 1) := HF^*(H^{\text{rot}} \circ \pi \text{ perturbed by } A \cdot \text{Re}(z))$$

 $$HF^*(E, 1 \pm \frac{1}{2}) := HF^*(H^{\text{rot}} \circ \pi \text{ perturbed by } \pm \frac{1}{2} \cdot |z|^2).$$
Hamiltonian Floer cohomology

Question

How to define the Hamiltonian Floer cohomology of $H^{\text{rot}} \circ \pi$?

- Traditionally: perturb $H^{\text{rot}} \circ \pi$ using the lift of $\epsilon |z|^2$ for $0 < |\epsilon| < 1$.
- Alternatively: use the lift of $z \mapsto A \cdot \text{Re}(z)$ for some $A \neq 0$.
- Define Hamiltonian Floer cohomology:

 $$HF^*(E, 1) := HF^*(H^{\text{rot}} \circ \pi \text{ perturbed by } A \cdot \text{Re}(z))$$

 $$HF^*(E, 1 \pm \frac{1}{2}) := HF^*(H^{\text{rot}} \circ \pi \text{ perturbed by } \pm \frac{1}{2} \cdot |z|^2).$$

Proposition

There exist long exact sequences

$$\cdots \rightarrow HF^*(E, \frac{1}{2}) \rightarrow HF^*(E, 1) \rightarrow HF^{*-1}(\mu) \rightarrow \cdots$$

$$\cdots \rightarrow HF^*(E, 1) \rightarrow HF^*(E, 1 + \frac{1}{2}) \rightarrow HF^*(\mu) \rightarrow \cdots.$$
Iterating the monodromy
Iterating the monodromy

- More generally, we can consider $rH^{\text{rot}} \circ \pi$ for $r \in \mathbb{Z}$, and Floer cohomology groups $HF^*(E, r)$ and $HF^*(E, r \pm \frac{1}{2})$.

Iterating the monodromy

- More generally, we can consider \(rH^\text{rot} \circ \pi \) for \(r \in \mathbb{Z} \), and Floer cohomology groups \(HF^*(E, r) \) and \(HF^*(E, r \pm \frac{1}{2}) \).
- They fit into long exact sequences

\[
\cdots \rightarrow HF^*(E, r - \frac{1}{2}) \rightarrow HF^*(E, r) \rightarrow HF^{*-1}(\mu^r) \rightarrow \cdots
\]

\[
\cdots \rightarrow HF^*(E, r) \rightarrow HF^*(E, r + \frac{1}{2}) \rightarrow HF^*(\mu^r) \rightarrow \cdots
\]
Iterating the monodromy

• More generally, we can consider $rH^{\text{rot}} \circ \pi$ for $r \in \mathbb{Z}$, and Floer cohomology groups $HF^*(E, r)$ and $HF^*(E, r \pm \frac{1}{2})$.

• They fit into long exact sequences

\[
\cdots \to HF^*(E, r - \frac{1}{2}) \to HF^*(E, r) \to HF^{*-1}(\mu^r) \to \cdots \\
\cdots \to HF^*(E, r) \to HF^*(E, r + \frac{1}{2}) \to HF^*(\mu^r) \to \cdots .
\]

Proposition

There exists a nondegenerate pairing

\[
\langle -, - \rangle_r : HF^*(E, r) \otimes HF^{2n-*}(E, -r) \to \mathbb{C}.
\]
Iterating the monodromy

• More generally, we can consider \(rH^{\text{rot}} \circ \pi \) for \(r \in \mathbb{Z} \), and Floer cohomology groups \(HF^*(E, r) \) and \(HF^*(E, r \pm \frac{1}{2}) \).

• They fit into long exact sequences

\[
\cdots \rightarrow HF^*(E, r - \frac{1}{2}) \rightarrow HF^*(E, r) \rightarrow HF^{*-1}(\mu^r) \rightarrow \cdots \\
\cdots \rightarrow HF^*(E, r) \rightarrow HF^*(E, r + \frac{1}{2}) \rightarrow HF^*(\mu^r) \rightarrow \cdots.
\]

Proposition

There exists a nondegenerate pairing

\[
\langle - , - \rangle_r : HF^*(E, r) \otimes HF^{2n-*}(E, -r) \rightarrow \mathbb{C}.
\]

For each \(r \in \mathbb{Z}_{\geq 1} \), \(HF^*(E, r) \) admits a \(\mathbb{Z}/r \)-action, so that \(HF^*(E, r) \rightarrow HF^{*-1}(\mu^r) \) is \(\mathbb{Z}/r \)-equivariant.
Fukaya–Seidel category and Serre functor
Fukaya–Seidel category and Serre functor

- Let \mathcal{A} be the Fukaya–Seidel category (over \mathbb{C}) of $\pi : E \to \mathbb{C}$ (with objects all Lefschetz thimbles).
Fukaya–Seidel category and Serre functor

- Let \mathcal{A} be the Fukaya–Seidel category (over \mathbb{C}) of $\pi : E \to \mathbb{C}$ (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)

*The Hamiltonian diffeomorphism defined by $H^{\text{rot}} \circ \pi$ (perturbed by $A \cdot \text{Re}(z)$) induces the inverse Serre functor S^{-1} on \mathcal{A}.**
Fukaya–Seidel category and Serre functor

- Let \mathcal{A} be the Fukaya–Seidel category (over \mathbb{C}) of $\pi : E \to \mathbb{C}$ (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)

The Hamiltonian diffeomorphism defined by $H^{\text{rot}} \circ \pi$ (perturbed by $A \cdot \text{Re}(z)$) induces the inverse Serre functor S^{-1} on \mathcal{A}.

- Recall: $\mathcal{A}(SX, Y) \cong \mathcal{A}(Y, X)^\vee$, S represents the linear dual bimodule \mathcal{A}^\vee.
Fukaya–Seidel category and Serre functor

- Let \mathcal{A} be the Fukaya–Seidel category (over \mathbb{C}) of $\pi : E \to \mathbb{C}$ (with objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)

*The Hamiltonian diffeomorphism defined by $H^{\text{rot}} \circ \pi$ (perturbed by $\mathcal{A} \cdot \text{Re}(z)$) induces the inverse Serre functor S^{-1} on \mathcal{A}.***

- Recall: $\mathcal{A}(S X, Y) \cong \mathcal{A}(Y, X)^\vee$, S represents the linear dual bimodule \mathcal{A}^\vee.

- Here $\mathcal{A}^\vee(X, Y) = \text{Hom}(\mathcal{A}(X, Y), \mathbb{C})$, and

 $\langle \mu_{\mathcal{A}^\vee}(a_s, \ldots, a_1, \pi, b_r, \ldots, b_1), p \rangle = \pm \langle \pi, \mu^{r+1+s}(b_r, \ldots, b_1, p, a_s, \ldots, a_1) \rangle$.
Twisted open-closed maps for Lefschetz fibrations
Twisted open-closed maps for Lefschetz fibrations

Theorem (B–Seidel)

For each $r \in \mathbb{Z}$, there exists a \mathbb{Z}/r-equivariant twisted open-closed string map

$$OC(r) : HH_*(A, (A^\vee)^\otimes r) \to HF^*(E, -r)[n(1 + r)]$$

such that the following diagram commutes
Twisted open-closed maps for Lefschetz fibrations

Theorem (B–Seidel)

For each $r \in \mathbb{Z}$, there exists a \mathbb{Z}/r-equivariant twisted open-closed string map

$$OC(r) : HH_*(\mathcal{A}, (\mathcal{A}^\vee)^{\otimes r}) \to HF^*(E, -r)[n(1 + r)]$$

such that the following diagram commutes

$$
\begin{array}{ccc}
HH_*(\mathcal{A}, (\mathcal{A}^\vee)^{\otimes r}) \otimes HH_*(\mathcal{A}, (\mathcal{A}^\vee)^{\otimes -r}) & \xrightarrow{\text{Shklyarov pairing}} & \mathbb{C} \\
OC(r) \otimes OC(-r) & \xrightarrow{\langle -, - \rangle_r} & HF^*(E, -r)[n(1 + r)] \otimes HF^*(E, r)[n(1 - r)]
\end{array}
$$
Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).
Twisted open-closed maps for Lefschetz fibrations

- The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).

Proposition

\mathcal{A} is homologically smooth.
Twisted open-closed maps for Lefschetz fibrations

- The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).

Proposition

A is homologically smooth.

- A distinguished basis defines a directed category, which has “automatic” smoothness. The point is that all Lefschetz thimbles are generated by the ones from a distinguished basis.
Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).

Proposition

\mathcal{A} is homologically smooth.

• A distinguished basis defines a directed category, which has “automatic” smoothness. The point is that all Lefschetz thimbles are generated by the ones from a distinguished basis.

Corollary

$\forall r \in \mathbb{Z}, \ OC(r) : HH_*(\mathcal{A}, (\mathcal{A}^\vee)^{\otimes r}) \to HF^*(E, -r)[n(1 + r)]$ is injective.
Twisted open-closed maps for Lefschetz fibrations

- The proof conceptually follows from the argument in the monotone case, but requires a different technical framework to deal with J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).

Proposition

\mathcal{A} is homologically smooth.

- A distinguished basis defines a directed category, which has “automatic” smoothness. The point is that all Lefschetz thimbles are generated by the ones from a distinguished basis.

Corollary

$\forall r \in \mathbb{Z}, \ OC(r) : HH_*(\mathcal{A}, (\mathcal{A}^\vee) \otimes r) \to HF^*(E, -r)[n(1 + r)]$ is injective.

- A conjecture of Seidel expects it to be an isomorphism.
Table of Contents

Main construction in a toy model
- Fixed point Floer cohomology
- Twisted Shklyarov pairing
- A Cardy relation

Lefschetz fibrations and noncommutative divisor
- Hamiltonian Floer cohomology of the global monodromy
- Noncommutative anti-canonical divisor

Other applications
- Collapsing critical values
Noncommutative anti-canonical divisor
Noncommutative anti-canonical divisor

Question

How to construct an A_∞ category \mathcal{B}, such that $\mathcal{A} \subset \mathcal{B}$ is a full subcategory, and $\mathcal{B}/\mathcal{A} \cong \mathcal{A}^\vee[1 - n]$ as A_∞ bimodules?
Noncommutative anti-canonical divisor

Question

How to construct an A_∞ category \mathcal{B}, such that $\mathcal{A} \subset \mathcal{B}$ is a full subcategory, and $\mathcal{B}/\mathcal{A} \cong \mathcal{A}^\vee[1 - n]$ as A_∞ bimodules?

- At the level of morphisms, $\mathcal{B}(X, Y) = \mathcal{A}(X, Y) \oplus \mathcal{A}^\vee(X, Y)[1 - n]$. The “0-th” order information is contained in $\mu^k_\mathcal{A}$ and $\mu^{|1-r|}_\mathcal{A}$.
Noncommutative anti-canonical divisor

Question

How to construct an A_∞ category \mathcal{B}, such that $\mathcal{A} \subset \mathcal{B}$ is a full subcategory, and $\mathcal{B}/\mathcal{A} \cong \mathcal{A}^\vee[1-n]$ as A_∞ bimodules?

- At the level of morphisms, $\mathcal{B}(X, Y) = \mathcal{A}(X, Y) \oplus \mathcal{A}^\vee(X, Y)[1-n]$. The “0-th” order information is contained in μ^k_A and $\mu^r_{\mathcal{A}^\vee}$.
- The “first” order information is a bimodule homomorphism

$$\theta : T(\mathcal{A}[1]) \otimes \mathcal{A}^\vee[-n] \otimes T(\mathcal{A}[1]) \to \mathcal{A},$$

which defines a class in $H^0(\text{hom}(\mathcal{A}^\vee[-n], \mathcal{A})) \cong HH_*(\mathcal{A}, S^{-1})$.
Noncommutative anti-canonical divisor

Question

How to construct an A_∞ category B, such that $A \subset B$ is a full subcategory, and $B/A \cong A^\vee[1-n]$ as A_∞ bimodules?

- At the level of morphisms, $B(X, Y) = A(X, Y) \oplus A^\vee(X, Y)[1-n]$. The “0-th” order information is contained in μ^k_A and $\mu_A^{r|1|s}$.
- The “first” order information is a bimodule homomorphism

$$\theta : T(A[1]) \otimes A^\vee[-n] \otimes T(A[1]) \to A,$$

which defines a class in $H^0(\text{hom}(A^\vee[-n], A)) \cong HH_*(A, S^{-1})$.
- The “higher” information is encoded in

$$H^*(\text{hom}((A^\vee)^r, A))^\mathbb{Z}/(r+1) \cong HH_*(A, S^{-(r+1)})^\mathbb{Z}/(r+1).$$
Noncommutative anti-canonical divisor

Proposition

If $HH_\ast(A, S^{-(r+1)})\mathbb{Z}/(r+1)$ is supported on non-negative degrees, an A_∞ structure on $A \oplus A^\vee [1-n]$ is uniquely determined by the first-order information $\theta \in HH_\ast(A, S^{-1})$.
Noncommutative anti-canonical divisor

Proposition

If $\text{HH}_*(\mathcal{A}, S^{-(r+1)}) \mathbb{Z}/(r+1)$ is supported on non-negative degrees, an A_∞ structure on $\mathcal{A} \oplus \mathcal{A}^\vee[1-n]$ is uniquely determined by the first-order information $\theta \in \text{HH}_*(\mathcal{A}, S^{-1})$.

- The element θ can be viewed as a “section of the anti-canonical bundle.”
Noncommutative anti-canonical divisor

Proposition

If $HH_\bullet(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)}$ is supported on non-negative degrees, an A_∞ structure on $\mathcal{A} \oplus \mathcal{A}^\vee [1-n]$ is uniquely determined by the first-order information $\theta \in HH_\bullet(\mathcal{A}, S^{-1})$.

- The element θ can be viewed as a “section of the anti-canonical bundle.”

Lemma

If $\pi: E \to \mathbb{C}$ is constructed by removing the fiber over ∞ of an anti-canonical Lefschetz pencil, then $HF^\bullet(E, r)$ is supported on non-negative degrees.
Noncommutative anti-canonical divisor

Proposition

If \(HH_\ast(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)} \) is supported on non-negative degrees, an \(A_\infty \) structure on \(\mathcal{A} \oplus \mathcal{A}^\vee [1 - n] \) is uniquely determined by the first-order information \(\theta \in HH_\ast(\mathcal{A}, S^{-1}) \).

- The element \(\theta \) can be viewed as a “section of the anti-canonical bundle.”

Lemma

If \(\pi : E \to \mathbb{C} \) is constructed by removing the fiber over \(\infty \) of an anti-canonical Lefschetz pencil, then \(HF_\ast(E, r) \) is supported on non-negative degrees.

- Because \(OC(r) \) is injective, we conclude that \(HH_\ast(\mathcal{A}, S^{-(r+1)}) \) is supported on non-negative degrees. The \(\mathbb{Z}/r \)-equivariance of \(OC(r) \) implies that \(HH_\ast(\mathcal{A}, S^{-(r+1)})^{\mathbb{Z}/(r+1)} \) satisfies the same property.
Mirror symmetry implications

- For $\pi: E \to C$ anti-canonical, Fukaya category of the fiber B and the restriction functor $A \to B$ define a noncommutative anti-canonical divisor (cf. Seidel's Lefschetz VI).
- The above discussion shows that to reconstruct B from A, we just need a natural transformation $S \to \text{id}$, which is in fact realized as the identity element in $HF^*(E,1)$ under the open-closed map.
- The same actually holds for the deformation of the pair $A \to B$ induced by adding back the base locus.
- This is a step towards showing that the compact Fukaya category of the Calabi–Yau hypersurface B is actually defined over a polynomial ring after applying a mirror map.
Mirror symmetry implications

• For $\pi : E \to \mathbb{C}$ anti-canonical, Fukaya category of the fiber \mathcal{B} and the restriction functor $\mathcal{A} \to \mathcal{B}$ define a noncommutative anti-canonical divisor (cf. Seidel’s Lefschetz VI).
Mirror symmetry implications

- For $\pi : E \to \mathbb{C}$ anti-canonical, Fukaya category of the fiber \mathcal{B} and the restriction functor $\mathcal{A} \to \mathcal{B}$ define a noncommutative anti-canonical divisor (cf. Seidel’s Lefschetz VI).

- The above discussion shows that to reconstruct \mathcal{B} from \mathcal{A}, we just need a natural transformation

$$S \to \text{id},$$

which is in fact realized as the identity element in $HF^*(E, 1)$ under the open-closed map.
Mirror symmetry implications

- For $\pi : E \to \mathbb{C}$ anti-canonical, Fukaya category of the fiber \mathcal{B} and the restriction functor $\mathcal{A} \to \mathcal{B}$ define a noncommutative anti-canonical divisor (cf. Seidel’s Lefschetz VI).

- The above discussion shows that to reconstruct \mathcal{B} from \mathcal{A}, we just need a natural transformation

$$\mathcal{S} \to \text{id},$$

which is in fact realized as the identity element in $HF^*(E, 1)$ under the open-closed map.

- The same actually holds for the deformation of the pair $\overline{\mathcal{A}} \to \overline{\mathcal{B}}$ induced by adding back the base locus.
Mirror symmetry implications

- For $\pi : E \to \mathbb{C}$ anti-canonical, Fukaya category of the fiber B and the restriction functor $A \to B$ define a noncommutative anti-canonical divisor (cf. Seidel’s Lefschetz VI).

- The above discussion shows that to reconstruct B from A, we just need a natural transformation

 $$S \to \text{id},$$

 which is in fact realized as the identity element in $HF^*(E, 1)$ under the open-closed map.

- The same actually holds for the deformation of the pair $\overline{A} \to \overline{B}$ induced by adding back the base locus.

- This is a step towards showing that the compact Fukaya category of the Calabi–Yau hypersurface \overline{B} is actually defined over a polynomial ring after applying a mirror map.
Table of Contents

Main construction in a toy model
 Fixed point Floer cohomology
 Twisted Shklyarov pairing
 A Cardy relation

Lefschetz fibrations and noncommutative divisor
 Hamiltonian Floer cohomology of the global monodromy
 Noncommutative anti-canonical divisor

Other applications
 Collapsing critical values
Isolated singularities
Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
Isolated singularities

• Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.

• The monodromy surrounding 0, $\mu : F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.
Isolated singularities

• Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.

• The monodromy surrounding 0, $\mu : F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let m be the multiplicity of f and 0. Then for any $r < m$, the fixed point Floer cohomology $HF^\ast(\mu^r) = 0$.
Isolated singularities

- Let $f : \mathbb{C}^n \to \mathbb{C}$ be a (germ of) holomorphic function defined near $0 \in \mathbb{C}^n$, such that 0 is an isolated singularity.
- The monodromy surrounding 0, $\mu : F \to F$, can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let m be the multiplicity of f and 0. Then for any $r < m$, the fixed point Floer cohomology $HF^*(\mu^r) = 0$.

- Using the long exact sequence

$$
\cdots \to HF^*(E, \frac{1}{2}) \cong HF^*(\mathbb{C}^n) \to HF^*(E, 1) \to HF^{*-1}(\mu) \to \cdots,
$$

we know $\text{rank}HF^*(E, 1) \leq 1$.
Isolated singularities

- Let \(f : \mathbb{C}^n \to \mathbb{C} \) be a (germ of) holomorphic function defined near \(0 \in \mathbb{C}^n \), such that 0 is an isolated singularity.

- The monodromy surrounding 0, \(\mu : F \to F \), can be modified to be an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)

Let \(m \) be the multiplicity of \(f \) and 0. Then for any \(r < m \), the fixed point Floer cohomology \(HF^(\mu^r) = 0 \).*

- Using the long exact sequence

\[
\cdots \to HF^*(E, \frac{1}{2}) \cong HF^*(\mathbb{C}^n) \to HF^*(E, 1) \to HF^{*-1}(\mu) \to \cdots,
\]

we know \(\text{rank } HF^*(E, 1) \leq 1 \).

- After Morsifying \(f \), the associated Fukaya–Seidel category is nontrivial \(\Rightarrow HH^*(\mathcal{A}, \mathcal{A}) \cong HH^{*-n}(\mathcal{A}, S^{-1}) \neq 0 \).
Collapsing critical values
Collapsing critical values

• Using the injectivity of $O_C(-1)$, we see that $HF^*(E, 1)$ is exactly 1-dimensional.
Collapsing critical values

- Using the injectivity of $OC(-1)$, we see that $HF^*(E, 1)$ is exactly 1-dimensional.
- This simple computation already gives some interesting applications.
Collapsing critical values

- Using the injectivity of $OC(-1)$, we see that $HF^*(E, 1)$ is exactly 1-dimensional.
- This simple computation already gives some interesting applications.

Example

The holomorphic map

$$(\mathbb{C}^*)^n \to \mathbb{C}$$

$$(z_1, \ldots, z_n) \mapsto z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}$$

cannot be deformed to a regular function with isolated singularities but with fewer critical values.
Collapsing critical values

- Recall that $HH^*({\mathcal{A}}, {\mathcal{A}})$ has a ring structure.
Collapsing critical values

- Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.
- We can define the cup-length of $HH^*(\mathcal{A}, \mathcal{A})$ (denoted by $cl(\mathcal{A})$) to be the maximal $r \in \mathbb{Z}_{\geq 0}$ such that $\exists a_1, \ldots, a_r \in HH^*(\mathcal{A}, \mathcal{A})$ nilpotent and
 \[a_1 \cup \cdots \cup a_r \neq 0. \]
Collapsing critical values

- Recall that $HH^*({\mathcal A}, {\mathcal A})$ has a ring structure.
- We can define the cup-length of $HH^*({\mathcal A}, {\mathcal A})$ (denoted by $cl({\mathcal A})$) to be the maximal $r \in \mathbb{Z}_{\geq 0}$ such that $\exists a_1, \ldots, a_r \in HH^*({\mathcal A}, {\mathcal A})$ nilpotent and
 $$a_1 \cup \cdots \cup a_r \neq 0.$$
- Homological mirror symmetry tells us
 $$\mathcal F\left(\left(\mathbb{C}^*\right)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}\right) \cong D^b\text{Coh}(\mathbb{CP}^n).$$
Collapsing critical values

• Recall that $HH^*(\mathcal{A}, \mathcal{A})$ has a ring structure.

• We can define the cup-length of $HH^*(\mathcal{A}, \mathcal{A})$ (denoted by $\text{cl}(\mathcal{A})$) to be the maximal $r \in \mathbb{Z}_{\geq 0}$ such that $\exists a_1, \ldots, a_r \in HH^*(\mathcal{A}, \mathcal{A})$ nilpotent and

$$a_1 \cup \cdots \cup a_r \neq 0.$$

• Homological mirror symmetry tells us

$$\mathcal{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b \text{Coh}(\mathbb{C}\mathbb{P}^n).$$

• For $\mathcal{A} = D^b \text{Coh}(\mathbb{C}\mathbb{P}^n)$, we have $\text{cl}(\mathcal{A}) \geq n$ by looking at n linearly independent holomorphic vector field on $\mathbb{C}\mathbb{P}^n$ generated by the torus action.
Collapsing critical values

- If $\mathcal{A} = \mathcal{F}(\pi)$ for $\pi : E \to \mathbb{C}$ being a Morsification of an isolated singularity, we know $\text{cl}(\mathcal{A}) = 0$.
Collapsing critical values

• If $\mathcal{A} = \mathcal{F}(\pi)$ for $\pi : E \to \mathbb{C}$ being a Morsification of an isolated singularity, we know $\text{cl}(\mathcal{A}) = 0$.

Lemma

Suppose \mathcal{A} admits a semi-orthogonal decomposition

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,$$

then $\text{cl}(\mathcal{A}) \leq \sum \text{cl}(\mathcal{A}_i) + m - 1$.
Collapsing critical values

- If \(\mathcal{A} = \mathcal{F}(\pi) \) for \(\pi : E \to \mathbb{C} \) being a Morsification of an isolated singularity, we know \(\text{cl}(\mathcal{A}) = 0 \).

Lemma

Suppose \(\mathcal{A} \) admits a semi-orthogonal decomposition

\[
\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,
\]

then \(\text{cl}(\mathcal{A}) \leq \sum \text{cl}(\mathcal{A}_i) + m - 1 \).

- If we could collapse the critical values of \(z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n} \), we would obtain a semi-orthogonal decomposition of

\[
\mathcal{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b\text{Coh}(\mathbb{C}P^n)
\]

of length \(\leq n - 1 \).
Collapsing critical values

• If $\mathcal{A} = \mathcal{F}(\pi)$ for $\pi : E \to \mathbb{C}$ being a Morsification of an isolated singularity, we know $\text{cl}(\mathcal{A}) = 0$.

Lemma

Suppose \mathcal{A} admits a semi-orthogonal decomposition

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_m \rangle,$$

then $\text{cl}(\mathcal{A}) \leq \sum \text{cl}(\mathcal{A}_i) + m - 1$.

• If we could collapse the critical values of $z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}$, we would obtain a semi-orthogonal decomposition of

$$\mathcal{F}((\mathbb{C}^*)^n, z_1 + \cdots + z_n + \frac{1}{z_1 \cdots z_n}) \cong D^b\text{Coh}(\mathbb{C}\mathbb{P}^n)$$

of length $\leq n - 1$.

• This would imply its cup-length is $\leq n - 1 \Rightarrow$ contradiction!
Thanks for your attention!