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Fixed point Floer cohomology

• (M2n, ω), closed, monotone: [ω] = c1(M).

• φ : M → M symplectic automorphism: φ ∈ Diff(M) and φ∗ω = ω.

• ∀x ∈ Fix(φ), det(Dφx − id) 6= 0 ⇒ only finitely many fixed points.

• CF ∗(φ) :=
⊕

x∈Fix(φ) Cx , Z/2-graded.

• Choose Jt , t ∈ R compatible, φ∗Jt+1 = Jt .

• Count u : R2
s,t → M

φ ◦ u(t + 1, s) = u(t, s), ∂su + Jt(u)∂tu = 0

to define differential on CF ∗(φ).

• Output: fixed point Floer cohomology HF ∗(φ).
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Some algebraic structures

• Poincaré type pairing

HF ∗(φ)⊗ HF 2n−∗(φ−1)→ C,

nondegenerate, coincides with the Poincaré pairing on
QH∗(M) = H∗(M) for φ = id.

• Conjugation isomorphism: ψ symplectic automorphism, then

HF ∗(φ)
∼−→ HF ∗(ψφψ−1).

• ⇒ HF ∗(φr ) admits a Z/r -action induced by conjugation with φ.
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• Poincaré type pairing

HF ∗(φ)⊗ HF 2n−∗(φ−1)→ C,

nondegenerate, coincides with the Poincaré pairing on
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Twisted Hochschild homology

• F: strictly proper A∞ category over C, Z/2-graded.
⇒ ∀X ,Y ∈ Ob(F), F(X ,Y ) is a finite-dimensional Z/2-graded
vector space over C.

• Φ : F → F strict A∞ automorphism.
⇒ an A∞ functor with Φk = 0,∀k ≥ 2, Φ1 is an isomorphism of
graded vector spaces.

• Example: F = monotone Fukaya category of (M, ω),
Φ = automorphism of F induced by φ, which can be made strict by
formally introducing more objects in F.
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Twisted Hochschild homology

• Twisted Hochschild chain complex CC∗(F,Φ) :=⊕
L0,...,Lk

F(Lk−1, Lk)[1]⊗ · · · ⊗ F(L0, L1)[1]⊗ F(Φ(Lk), L0).

• Differential: bar differential, only using µk
F, with (co)homology

denoted by HH∗(F,Φ).

Proposition
There exists a bilinear pairing

〈−,−〉Φ : HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)→ C.

If F is homologically smooth, then it is nondegenerate. For r ≥ 1,
HH∗(F,Φ

r ) admits a Z/r -action which is generated by conjugation with
Φ.

• The pairing generalizes the pairing defined by Shklyarov for Φ = id.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Twisted Hochschild homology

• Twisted Hochschild chain complex CC∗(F,Φ) :=⊕
L0,...,Lk

F(Lk−1, Lk)[1]⊗ · · · ⊗ F(L0, L1)[1]⊗ F(Φ(Lk), L0).

• Differential: bar differential, only using µk
F, with (co)homology

denoted by HH∗(F,Φ).

Proposition
There exists a bilinear pairing

〈−,−〉Φ : HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)→ C.

If F is homologically smooth, then it is nondegenerate. For r ≥ 1,
HH∗(F,Φ

r ) admits a Z/r -action which is generated by conjugation with
Φ.

• The pairing generalizes the pairing defined by Shklyarov for Φ = id.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Twisted Hochschild homology

• Twisted Hochschild chain complex CC∗(F,Φ) :=⊕
L0,...,Lk

F(Lk−1, Lk)[1]⊗ · · · ⊗ F(L0, L1)[1]⊗ F(Φ(Lk), L0).

• Differential: bar differential, only using µk
F, with (co)homology

denoted by HH∗(F,Φ).

Proposition
There exists a bilinear pairing

〈−,−〉Φ : HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)→ C.

If F is homologically smooth, then it is nondegenerate. For r ≥ 1,
HH∗(F,Φ

r ) admits a Z/r -action which is generated by conjugation with
Φ.

• The pairing generalizes the pairing defined by Shklyarov for Φ = id.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Twisted Hochschild homology

• Twisted Hochschild chain complex CC∗(F,Φ) :=⊕
L0,...,Lk

F(Lk−1, Lk)[1]⊗ · · · ⊗ F(L0, L1)[1]⊗ F(Φ(Lk), L0).

• Differential: bar differential, only using µk
F, with (co)homology

denoted by HH∗(F,Φ).

Proposition
There exists a bilinear pairing

〈−,−〉Φ : HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)→ C.

If F is homologically smooth, then it is nondegenerate. For r ≥ 1,
HH∗(F,Φ

r ) admits a Z/r -action which is generated by conjugation with
Φ.

• The pairing generalizes the pairing defined by Shklyarov for Φ = id.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Twisted Shklyarov pairing

• The construction of 〈−,−〉Φ relies on using the diagonal bimodule
to construct an element in HH∗(F,Φ)⊗ HH−∗(F,Φ

−1).

• The proof of the nondegeneracy is a generalization of the snake
relation in the presence of an automorphism.

• Here is an explicit formula:

〈−,−〉Φ : CC∗(F,Φ)⊗ CC−∗(F,Φ
−1) −→ C,

〈am ⊗ · · · ⊗ a1 ⊗ a0, bn ⊗ · · · ⊗ b1 ⊗ b0〉Φ
=
∑
ijkl

Str
(
y 7→ ±µi−j−k+l+m+2

F (ai , . . . , a0,Φam, . . . ,Φak+1,

µ−i+j+k−l+n+2
F (Φak , . . . ,Φai+1,Φy ,Φbj , . . . ,Φb1,Φb0,

bn, . . . , bl+1), bl , . . . , bj+1)
)
.
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Twisted Shklyarov pairing
• For length 1 Hochschild chains, the pairing is reduced to

F(Φ(L0), L0)⊗ F(Φ−1(L1), L1)→ C
a0 ⊗ b0 7→ ±Str(y 7→ µ2(a0, µ

2(Φy ,Φb0))),

where the super-trace is taken over F(L0, L1).
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Twisted open-closed string map

Proposition
For F = F(M, ω), and φ : (M, ω)→ (M, ω), there exists a twisted
open-closed string map OC (φ) : HH∗(F,Φ)→ HF ∗+n(φ) making the
following diagram commute.

HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)

〈−,−〉Φ

**
OC(φ)⊗OC(φ−1)

��

C

HF n+∗(φ)⊗ HF n−∗(φ−1)

Poincaré

44

Corollary
If F is homologically smooth, OC (φ) is injective.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Twisted open-closed string map

Proposition
For F = F(M, ω), and φ : (M, ω)→ (M, ω), there exists a twisted
open-closed string map OC (φ) : HH∗(F,Φ)→ HF ∗+n(φ) making the
following diagram commute.

HH∗(F,Φ)⊗ HH−∗(F,Φ
−1)

〈−,−〉Φ

**
OC(φ)⊗OC(φ−1)

��

C

HF n+∗(φ)⊗ HF n−∗(φ−1)

Poincaré
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A Cardy relation
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Some further remarks on OC (φ)

• OC (φr ) : HH∗(F,Φ
r )→ HF n+∗(φr ) is Z/r -equivariant.

• For (M, ω) monotone, F(M, ω) is decomposed into smaller pieces
according to the value of the disc potential. All the above
constructions “respect” such a decomposition.

• An interesting question: replace Φ by Lagrangian correspondences.
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Lefschetz fibrations

• Let π : E → C be an exact symplectic Lefschetz fibration, with fiber
(F , ω, θ) a Liouville domain.

• µ : F → F global monodromy: it’s compactly supported, and
∃Gφ : F → F such that φ∗θ − θ = dGφ.

• The Hamiltonian

H rot : (C,
√
−1

2
dz ∧ dz)→ R

z 7→ π|z |2

defines a Hamiltonian H rot ◦ π : E → R.

• The associated Hamiltonian diffeomorphism is equal to identity
viewed from C, and restricts to µ on each fiber over the complement
of a compact subset.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Lefschetz fibrations

• Let π : E → C be an exact symplectic Lefschetz fibration, with fiber
(F , ω, θ) a Liouville domain.

• µ : F → F global monodromy: it’s compactly supported, and
∃Gφ : F → F such that φ∗θ − θ = dGφ.

• The Hamiltonian

H rot : (C,
√
−1

2
dz ∧ dz)→ R

z 7→ π|z |2

defines a Hamiltonian H rot ◦ π : E → R.

• The associated Hamiltonian diffeomorphism is equal to identity
viewed from C, and restricts to µ on each fiber over the complement
of a compact subset.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Lefschetz fibrations

• Let π : E → C be an exact symplectic Lefschetz fibration, with fiber
(F , ω, θ) a Liouville domain.

• µ : F → F global monodromy: it’s compactly supported, and
∃Gφ : F → F such that φ∗θ − θ = dGφ.

• The Hamiltonian

H rot : (C,
√
−1

2
dz ∧ dz)→ R

z 7→ π|z |2

defines a Hamiltonian H rot ◦ π : E → R.

• The associated Hamiltonian diffeomorphism is equal to identity
viewed from C, and restricts to µ on each fiber over the complement
of a compact subset.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Lefschetz fibrations

• Let π : E → C be an exact symplectic Lefschetz fibration, with fiber
(F , ω, θ) a Liouville domain.

• µ : F → F global monodromy: it’s compactly supported, and
∃Gφ : F → F such that φ∗θ − θ = dGφ.

• The Hamiltonian

H rot : (C,
√
−1

2
dz ∧ dz)→ R

z 7→ π|z |2

defines a Hamiltonian H rot ◦ π : E → R.

• The associated Hamiltonian diffeomorphism is equal to identity
viewed from C, and restricts to µ on each fiber over the complement
of a compact subset.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Lefschetz fibrations

• Let π : E → C be an exact symplectic Lefschetz fibration, with fiber
(F , ω, θ) a Liouville domain.

• µ : F → F global monodromy: it’s compactly supported, and
∃Gφ : F → F such that φ∗θ − θ = dGφ.

• The Hamiltonian

H rot : (C,
√
−1

2
dz ∧ dz)→ R

z 7→ π|z |2

defines a Hamiltonian H rot ◦ π : E → R.

• The associated Hamiltonian diffeomorphism is equal to identity
viewed from C, and restricts to µ on each fiber over the complement
of a compact subset.



Main construction in a toy model Lefschetz fibrations and noncommutative divisor Other applications

Hamiltonian Floer cohomology
Question
How to define the Hamiltonian Floer cohomology of H rot ◦ π?

• Traditionally: perturb H rot ◦ π using the lift of ε|z |2 for 0 < |ε| < 1.
• Alternatively: use the lift of z 7→ A · Re(z) for some A 6= 0.
• Define Hamiltonian Floer cohomology:

HF ∗(E , 1) := HF ∗(H rot ◦ π perturbed by A · Re(z))

HF ∗(E , 1± 1

2
) := HF ∗(H rot ◦ π perturbed by ± 1

2
· |z |2).

Proposition
There exist long exact sequences

· · · → HF ∗(E ,
1

2
)→ HF ∗(E , 1)→ HF ∗−1(µ)→ · · ·

· · · → HF ∗(E , 1)→ HF ∗(E , 1 +
1

2
)→ HF ∗(µ)→ · · · .
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Iterating the monodromy

• More generally, we can consider rH rot ◦ π for r ∈ Z, and Floer
cohomology groups HF ∗(E , r) and HF ∗(E , r ± 1

2 ).

• They fit into long exact sequences

· · · → HF ∗(E , r − 1

2
)→ HF ∗(E , r)→ HF ∗−1(µr )→ · · ·

· · · → HF ∗(E , r)→ HF ∗(E , r +
1

2
)→ HF ∗(µr )→ · · · .

Proposition
There exists a nondegenerate pairing

〈−,−〉r : HF ∗(E , r)⊗ HF 2n−∗(E ,−r)→ C.

For each r ∈ Z≥1, HF ∗(E , r) admits a Z/r -action, so that
HF ∗(E , r)→ HF ∗−1(µr ) is Z/r -equivariant.
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Fukaya–Seidel category and Serre functor

• Let A be the Fukaya–Seidel category (over C) of π : E → C (with
objects all Lefschetz thimbles).

Proposition (folklore, attributed to Kontsevich–Seidel)
The Hamiltonian diffeomorphism defined by H rot ◦ π (perturbed by
A · Re(z)) induces the inverse Serre functor S−1 on A.

• Recall: A(SX ,Y ) ∼= A(Y ,X )∨, S represents the linear dual
bimodule A∨.

• Here A∨(X ,Y ) = Hom(A(X ,Y ),C), and

〈µA∨(as , . . . , a1, π, br , . . . , b1), p〉 = ±〈π, µr+1+s(br , . . . , b1, p, as , . . . , a1)〉.
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Twisted open-closed maps for Lefschetz fibrations

Theorem (B–Seidel)
For each r ∈ Z, there exists a Z/r -equivariant twisted open-closed string
map

OC (r) : HH∗(A, (A
∨)⊗r )→ HF ∗(E ,−r)[n(1 + r)]

such that the following diagram commutes

HH∗(A, (A
∨)⊗r )⊗ HH∗(A, (A

∨)⊗−r )

Shklyarov pairing

++
OC(r)⊗OC(−r)

��

C.

HF ∗(E ,−r)[n(1 + r)]⊗ HF ∗(E , r)[n(1− r)]

〈−,−〉r

33
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Twisted open-closed maps for Lefschetz fibrations

• The proof conceptually follows from the argument in the monotone
case, but requires a different technical framework to deal with
J-holomorphic curves (cf. Seidel’s Lefschetz IV and IV 1/2).

Proposition
A is homologically smooth.

• A distinguished basis defines a directed category, which has
“automatic” smoothness. The point is that all Lefschetz thimbles
are generated by the ones from a distinguished basis.

Corollary
∀r ∈ Z, OC (r) : HH∗(A, (A

∨)⊗r )→ HF ∗(E ,−r)[n(1 + r)] is injective.

• A conjecture of Seidel expects it to be an isomorphism.
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Noncommutative anti-canonical divisor

Question
How to construct an A∞ category B, such that A ⊂ B is a full
subcategory, and B/A ∼= A∨[1− n] as A∞ bimodules?

• At the level of morphisms, B(X ,Y ) = A(X ,Y )⊕A∨(X ,Y )[1− n].

The “0-th” order information is contained in µk
A and µ

r |1|s
A∨ .

• The “first” order information is a bimodule homomorphism

θ : T (A[1])⊗A∨[−n]⊗ T (A[1])→ A,

which defines a class in H0(hom(A∨[−n],A)) ∼= HH∗(A, S
−1).

• The “higher” information is encoded in

H∗(hom((A∨)⊗r ,A))Z/(r+1) ∼= HH∗(A, S
−(r+1))Z/(r+1).
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θ : T (A[1])⊗A∨[−n]⊗ T (A[1])→ A,

which defines a class in H0(hom(A∨[−n],A)) ∼= HH∗(A, S
−1).

• The “higher” information is encoded in

H∗(hom((A∨)⊗r ,A))Z/(r+1) ∼= HH∗(A, S
−(r+1))Z/(r+1).
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Noncommutative anti-canonical divisor

Proposition
If HH∗(A, S

−(r+1))Z/(r+1) is supported on non-negative degrees, an A∞
structure on A⊕A∨[1− n] is uniquely determined by the first-order
information θ ∈ HH∗(A, S

−1).

• The element θ can be viewed as a “section of the anti-canonical
bundle.”

Lemma
If π : E → C is constructed by removing the fiber over ∞ of an
anti-canonical Lefschetz pencil, then HF ∗(E , r) is supported on
non-negative degrees.

• Because OC (r) is injective, we conclude that HH∗(A, S
−(r+1)) is

supported on non-negative degrees. The Z/r -equivariance of OC (r)
implies that HH∗(A, S

−(r+1))Z/(r+1) satisfies the same property.
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Mirror symmetry implications

• For π : E → C anti-canonical, Fukaya category of the fiber B and
the restriction functor A→ B define a noncommutative
anti-canonical divisor (cf. Seidel’s Lefschetz VI).

• The above discussion shows that to reconstruct B from A, we just
need a natural transformation

S→ id,

which is in fact realized as the identity element in HF ∗(E , 1) under
the open-closed map.

• The same actually holds for the deformation of the pair A→ B

induced by adding back the base locus.

• This is a step towards showing that the compact Fukaya category of
the Calabi–Yau hypersurface B is actually defined over a polynomial
ring after applying a mirror map.
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Isolated singularities

• Let f : Cn → C be a (germ of) holomorphic function defined near
0 ∈ Cn, such that 0 is an isolated singularity.

• The monodromy surrounding 0, µ : F → F , can be modified to be
an exact symplectic automorphism of the Milnor fiber.

Theorem (McLean)
Let m be the multiplicity of f and 0. Then for any r < m, the fixed point
Floer cohomology HF ∗(µr ) = 0.

• Using the long exact sequence

· · · → HF ∗(E ,
1

2
) ∼= HF ∗(Cn)→ HF ∗(E , 1)→ HF ∗−1(µ)→ · · · ,

we know rankHF ∗(E , 1) ≤ 1.

• After Morsifying f , the associated Fukaya–Seidel category is
nontrivial ⇒ HH∗(A,A) ∼= HH∗+n(A, S−1) 6= 0.
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Collapsing critical values

• Using the injectivity of OC (−1), we see that HF ∗(E , 1) is exactly
1-dimensional.

• This simple computation already gives some interesting applications.

Example
The holomorphic map

(C∗)n → C

(z1, . . . , zn) 7→ z1 + · · ·+ zn +
1

z1 · · · zn

cannot be deformed to a regular function with isolated singularities but
with fewer critical values.
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Collapsing critical values

• Recall that HH∗(A,A) has a ring structure.

• We can define the cup-length of HH∗(A,A) (denoted by cl(A)) to
be the maximal r ∈ Z≥0 such that ∃a1, . . . , ar ∈ HH∗(A,A)
nilpotent and

a1 ∪ · · · ∪ ar 6= 0.

• Homological mirror symmetry tells us

F
(
(C∗)n, z1 + · · ·+ zn +

1

z1 · · · zn
) ∼= DbCoh(CPn).

• For A = DbCoh(CPn), we have cl(A) ≥ n by looking at n linearly
independent holomorphic vector field on CPn generated by the torus
action.
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Collapsing critical values

• If A = F(π) for π : E → C being a Morsification of an isolated
singularity, we know cl(A) = 0.

Lemma
Suppose A admits a semi-orthogonal decomposition

A = 〈A1, . . . ,Am〉,

then cl(A) ≤
∑

cl(Ai ) + m − 1.

• If we could collapse the critical values of z1 + · · ·+ zn + 1
z1···zn , we

would obtain a semi-orthogonal decomposition of

F
(
(C∗)n, z1 + · · ·+ zn +

1

z1 · · · zn
) ∼= DbCoh(CPn)

of length ≤ n − 1.

• This would imply its cup-length is ≤ n − 1 ⇒ contradiction!
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Thanks for your attention!
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