Quivers and Curves in Higher Dimension

Hülya Argüz

University of Georgia

Homological Mirror Symmetry IMSA University of Miami January 24, 2023

Plan of the talk

- Algebra: Quiver Donaldson-Thomas (DT) Invariants
 - The attractor flow tree formula (calculating quiver DT invariants via tropical geometry)
- Geometry: Counts of log curves in toric varieties
 - From quivers to toric varieties
 - Log Gromov–Witten (GW) invariants of toric varieties
 - Calculating log GW invariants tropically

- Quiver DT invariants \longleftrightarrow log GW invariants of toric varieties
- Quiver DT invariants \longleftrightarrow log GW invariants of cluster varieties

Definition

A quiver is a finite oriented graph $Q = (Q_0, Q_1, s, t)$.

- Q_0 : set of vertices.
- Q₁: set of arrows.
- $s: Q_1 \rightarrow Q_0$ maps an arrow to its *source*.
- $t: Q_1 \rightarrow Q_0$ maps an arrow to its *target*.

Representations of Quivers

Definition

A representation of a quiver is an assignement of

- a vector space V_v , for each vertex $v \in Q_0$, and
- a linear transformation $f_{ij} \in \operatorname{Hom}_{\mathbb{C}}(V_{s(e)}, V_{t(e)})$ for each edge $e \in Q_1$.

• Dimension of a quiver representation is a vector

$$\gamma = (\gamma_i)_{i \in Q_0} \in N^+,$$

where $N := \mathbb{Z}^{Q_0}$ and $N^+ = \mathbb{N}^{Q_0} \setminus \{0\}$, encoding dimensions of the vector spaces assigned to vertices.

- There is a natural notion of morphisms/isomorphisms between two quiver representations (*f_{ij}*) and (*g_{ij}*):
 - automorphisms $h_i : \mathbb{C}^{\gamma_i} \to \mathbb{C}^{\gamma_i}$ such that $g_{ij} = f_{ij} \circ h_i$.

Definition (King's notion of stability)

- V: quiver representation of dimension $\gamma \in N^+$.
- $M := \operatorname{Hom}(N, \mathbb{Z})$ and $M_{\mathbb{R}} = \operatorname{Hom}(N, \mathbb{R}) = M \otimes \mathbb{R}$
- $\theta \in \gamma^{\perp} := \{ \theta \in M_{\mathbb{R}}, \theta(\gamma) = 0 \} \subset M_{\mathbb{R}}$: stability parameter.
 - V: θ -stable if $\forall \{0\} \subsetneq V' \subsetneq V$ we have $\theta(\dim(V')) < 0$.
 - V: θ -semi-stable if $\forall V' \subsetneq V$ we have $\theta(\dim(V')) \leq 0$.
- *M*^θ_γ: Moduli space of θ semi-stable quiver representations of *Q* dimension γ.

Quiver DT invariants

• "In nice cases" (when $\mathcal{M}^{\theta}_{\gamma}$: smooth) we define quiver DT invariants as the topological Euler characteristics:

$$DT^{ heta}_{\gamma} := e(\mathcal{M}^{ heta}_{\gamma}) = \sum_{k} (-1)^k \dim H^k(\mathcal{M}^{ heta}_{\gamma},\mathbb{C}) \,.$$

 Piecewise constant dependence on θ ∈ γ[⊥]: wall-crossing, universal wall-crossing formula (Kontsevich-Soibelman).

Example

Example

- Q: n-Kronecker quiver
- V: representation with $\gamma := \dim(V) = (1,1) \in N$

• $\theta = (\theta_1, -\theta_1) \in \gamma^{\perp} \subset M_{\mathbb{R}}.$

• $\theta_1 > 0$ and $(\xi_1, \dots, \xi_n) \neq 0 \implies V$ is θ semi-stable, $\mathcal{M}^{\theta}_{\gamma} \cong \mathbb{CP}^{n-1}$ • $\theta_1 < 0 \implies \mathcal{M}^{\theta}_{\gamma} = \emptyset.$

Quivers with potentials

• Path algebra $\mathbb{C}Q$: \mathbb{C} -linear combinations of paths in Q with concatenation product.

$$\mathbb{C}Q = \mathbb{C}v \oplus \mathbb{C}e \oplus \mathbb{C}w$$
$$v^2 = v, \ w^2 = w$$
$$ev = we = e$$

• Potential $W \in \mathbb{C}Q$: Formal linear combination of oriented cycles.

• We assume quivers do not have oriented two-cycles.

The trace function

• For $(Q, W = \sum \lambda_c c)$ define the trace function $\operatorname{Tr}(c)^{\theta}_{\gamma} : \mathcal{M}^{\theta}_{\gamma} \to \mathbb{C}$ $V = ((V_i)_{i \in Q_0}, (f_{\alpha})_{\alpha \in Q_1}) \longmapsto \operatorname{Tr}(f_{\alpha_n} \circ \ldots \circ f_{\alpha_1})$ $\operatorname{Tr}(W)^{\theta}_{\gamma} = \sum_{c} \lambda_c \operatorname{Tr}(c)^{\theta}_{\gamma}$

 C^θ_γ: Critical locus of Tr(W)^θ_γ ⊂ M^θ_γ.
 "In nice cases" (M^θ_γ smooth and Tr(W)^θ_γ Morse-Bott) Ω^θ_γ := e(C^θ_γ) = ∑_k(-1)^k dim H^k(C^θ_γ, C).

The (general) definition of DT invariants

Definition

For (Q, W): quiver with potential, $\gamma \in N^+$, and $\theta \in \gamma^{\perp} \subset M_{\mathbb{R}}$, the **Donaldson-Thomas (DT) invariant** $\Omega^{\theta}_{\gamma} \in \mathbb{Z}$ for $((Q, W), \gamma, \theta)$ is defined by

$$\Omega^{\theta}_{\gamma} = e(C^{\theta}_{\gamma}, \phi_{\mathrm{Tr}(W)^{\theta}_{\gamma}} \mathcal{IC}_{M^{\theta}_{\gamma}})$$

- $\mathcal{IC}_{M^{ heta}_{\gamma}}$: intersection cohomology sheaf on $M^{ heta}_{\gamma}$
 - $\mathcal{IC}_{M^{\theta}_{\gamma}}$ is a perverse sheaf $(M^{\theta}_{\gamma} \text{ smooth } \Longrightarrow \mathcal{IC}_{M^{\theta}_{\gamma}}$ is the constant sheaf with stalk \mathbb{Q})
- $\phi_{\operatorname{Tr}(W)^{\theta}_{\gamma}}$: vanishing cycle functor for the function $\operatorname{Tr}(W)^{\theta}_{\gamma}$
 - $\phi_{\mathrm{Tr}(W)^{\theta}_{\gamma}}\mathcal{IC}_{M^{\theta}_{\gamma}}$: sheaf on the critical locus $C^{\theta}_{\gamma} \subset M^{\theta}_{\gamma}$
- We will work with rational DT invariants given by

$$\overline{\Omega}^{ heta}_{\gamma} := \sum_{\substack{\gamma = k \gamma' \ k \in \mathbb{Z}_{\geq 1}, \gamma' \in \mathsf{N}^+}} rac{(-1)^{k-1}}{k^2} \Omega^{ heta}_{\gamma'}$$

• See Kontsevich-Soibelman, Joyce-Song, Reineke, Davison-Meinhardt

Ex: Ω^{θ}_{γ} can generally be very complicated

 $\bullet\,$ The 3-Kronecker quiver appears in ${\cal N}=$ 2, 4d $\,SU(3)$ super Yang-Mills theory^1

Figure: Values of Ω^{θ}_{γ} for the 3-Kronecker quiver

¹Galakhov–Longhi–Mainiero–Moore–Neitzke, "Wild wall crossing and BPS giants." Journal of High Energy Physics 2013.

Why are refined DT invariants of quivers interesting?

DT invariants from a "simple" set of invariants

 Yes! We calculate quiver DT invariants using wall structures and flow trees, from simpler (attractor) DT invariants.

H. Argüz, P. Bousseau: The flow tree formula for Donaldson–Thomas invariants of quivers with potentials, Compositio Mathematica 158 (12), 2206-2249, 2022

A simple set of DT invariants: attractor DT invariants

• Let $\{s_1, \ldots, s_{|Q_0|}\}$ be a basis for *N*. Define a skew symmetric form $\langle -, - \rangle$ on *N* by

$$\langle s_i, s_j
angle := a_{ij} - a_{ji}.$$

where a_{ij} is the number of arrows from *i* to *j*.

Fix γ ∈ N. The chamber containing ⟨γ, −⟩ ∈ γ[⊥] ∈ M_ℝ is an attractor chamber for γ (generally not γ-generic).

Definition (Alexandrov–Pioline, Mozgovoy–Pioline, Kontsevich–Soibelman)

Let $\theta \in \gamma^{\perp} \subset M_{\mathbb{R}}$ be a small perturbation of $\langle \gamma, - \rangle$ which is γ -generic. Define the **attractor DT invariants** by $\Omega^{\star}_{\gamma} := \Omega^{\theta}_{\gamma}$.

• Ω^{\star}_{γ} do not depend on the stability parameter θ , and are generally much simpler to compute.

The attractor DT invariants

Theorem (Bridgeland^a)

^aGeneralizations for some non-acyclic quivers: Lang Mou, arXiv:1910.13714

If Q is acyclic then

$$\Omega^{\star}_{\gamma} = \begin{cases} 1 & \text{if } \gamma = (0, \dots, 0, 1, 0, \dots, 0) \\ 0 & \text{otherwise} \end{cases}$$

Conjecture (Beaujard–Manschot–Pioline, Mozgovoy–Pioline^a)

Proven for the local P2 by Bousseau–Descombes–Le Floch–Pioline, arxiv:2210.10712

- K_S: local del Pezzo (canonical bundle over a del Pezzo surface S)
- Q: quiver, with the additional data of a potential functions W s.t. $D^b Rep(Q, W) \cong D^b Coh(K_S)$, then $\Omega^*_{\gamma} = 0$, unless either $\gamma = (0, \ldots, 0, 1, 0, \ldots, 0) \implies \Omega^*_{\gamma} = 1$ or γ is a multiple of a class of a point, in which case Ω^*_{γ} equals the Euler characteristic of S.

Attractor flows (Kontsevich-Soibelman arXiv:1303.3253)

- (Q, W): quiver with potential
- $\gamma \in \mathbf{N}^+$, and $\theta \in \gamma^{\perp}$, γ -generic.
- Iterative application of the Kontsevich-Soibelman wall-crossing formula:

$$\overline{\Omega}_{\gamma}^{\theta} = \sum_{\gamma = \gamma_1 + \dots + \gamma_r} \frac{1}{|\operatorname{Aut}((\gamma_i)_i)|} F_r^{\theta}(\gamma_1, \dots, \gamma_r) \prod_{i=1}^r \overline{\Omega}_{\gamma_i}^{\star}.$$

where

- $|\operatorname{Aut}((\gamma_i)_i)|$ is the order of the group of permutation symmetries of the decomposition $\gamma = \gamma_1 + \cdots + \gamma_r$, and
- The coefficients F^θ_r(γ₁,..., γ_r) are sums of contributions from attractor trees with leaves decorated by γ₁,..., γ_r and with root at θ:

$$F_r^{\theta}(\gamma_1,\ldots,\gamma_r) = \sum_{T \in \mathcal{T}_{\gamma_1,\ldots,\gamma_r}} F_{r,T}^{\theta}(\gamma_1,\ldots,\gamma_r)$$

M. Kontsevich, Y. Soibelman: "Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry". In Homological mirror symmetry and tropical geometry (pp. 197-308), Springer, 2014

 Attractor trees are in particular tropical trees – they satisfy the "tropical balancing condition" (weighted directions around edges add up to zero)

The flow tree formula

Theorem (Flow tree formula (A-Bousseau))

- (Q, W): quiver with potential
- $\gamma \in \mathbf{N}^+$, and $\theta \in \gamma^{\perp}$, γ -generic.

$$\overline{\Omega}_{\gamma}^{\theta} = \sum_{\gamma = \gamma_1 + \dots + \gamma_r} \frac{1}{|\operatorname{Aut}((\gamma_i)_i)|} F_r^{\theta}(\gamma_1, \dots, \gamma_r) \prod_{i=1}^r \overline{\Omega}_{\gamma_i}^{\star}.$$

where

• $F_r^{\theta}(\gamma_1, \ldots, \gamma_r) \in \mathbb{Q}$ are described concretely in terms of **binary** trees.

- Binary attractor trees are perturbations of the (generally non-binary) attractor trees with roots at θ.
- Conjectured by Alexandrov-Pioline.
- Proof uses wall structures.
- A variant of this formula is proven by Mozgovoy using operads.

The coefficients $F_r^{\theta}(\gamma_1, \ldots, \gamma_r)$

- For (Q, W), let $\gamma = \gamma_1 + \dots + \gamma_r \in N^+$. (repetitions allowed!)
- Simplifying assumption for now: $\{\gamma_1, \ldots, \gamma_r\}$ is a basis for *N*.

$$F_r^{\theta}(\gamma_1,\ldots,\gamma_r) := \sum_{T_r} \prod_{\mathbf{v}\in V_{T_r}^{\circ}} -\epsilon_{T_r,\mathbf{v}}^{\widetilde{\theta}}\langle e_{\mathbf{v}'}, e_{\mathbf{v}''} \rangle.$$

- T_r : rooted binary trees with r leaves (decorated by $\{\gamma_1, \ldots, \gamma_r\}$),
- $V_{T_r}^{\circ}$: set of interior vertices of of T_r ,
- $e_v \in \mathcal{N}$ is the sum of γ_i 's attached to leaves descendant from v for any $v \in V_{T_r}^{\circ}$,
- $\hat{ heta}$ is a small generic perturbation of heta in $M_{\mathbb{R}}$
- $\epsilon^{\theta}_{\mathcal{T}_{r},v} \in \{-1,0,1\}$ is a sign defined via "flows" (these signs control the realizability of \mathcal{T}_{r} as a binary attractor tree with root at $\tilde{\theta}$.).

The general case

• Generally, for $\gamma = \gamma_1 + \ldots + \gamma_r$, if $\{\gamma_1, \ldots, \gamma_r\}$ is not a basis, we introduce a bigger lattice

$$\mathcal{N} := \bigoplus_{i=1}^r \mathbb{Z} e_i$$

and consider the map

- $p: \mathcal{N} \to \mathcal{N}$ defined by $e_i \mapsto \gamma_i$
- Define a skew-symmetric form η on $\mathcal N$ by $\eta(e_i, e_j) := \langle \gamma_i, \gamma_j \rangle$.

 In this bigger space we can work with perturbations of attractor trees into binary trees.

Example: for Q the n-Kronecker quiver

- Q the n-Kronecker quiver
- Let $\theta = (\theta_1, -\theta_1)$ and $\gamma = (1, 1)$, so that $\gamma_1 = (1, 0)$, $\gamma_2 = (0, 1)$. In this case, can actually take $\tilde{\theta} = \theta$.

A correspondence between

$$F_r^{\theta}(\gamma_1,\ldots,\gamma_r)$$

and counts of rational curves in a toric variety X_{Σ} .

The toric variety X_{Σ} and enumerative geometry

Let Q be a quiver with I vertices and $\gamma \in N$. We set

- Σ : a fan in $M_{\mathbb{R}}$ of a smooth projective toric variety X_{Σ} containing the rays $\mathbb{R}_{\geq 0}\langle \gamma_i, \rangle$ for all $i \in I$.
- $H_i \subset D_i$ hypersurfaces defined by $\{z^{\gamma_i} = constant\}$

- Count genus 0 stable maps $(C, \{p_1, \ldots, p_{r+1}\}) \rightarrow X_{\Sigma}$ satisfying
 - $\blacktriangleright \quad p_i \mapsto H_i \text{ for all } 1 \leq i \leq r$
 - ► The contact order of the image of p_i with D_i is the divisibility of ⟨γ_i, −⟩

Log log log log log...

Log Gromov–Witten theory

 Jun Li: The case D ⊂ X is smooth. Expand the target;

$$egin{aligned} X &\mapsto X[1] = X \amalg_D \mathbb{P}(\mathcal{N}_{D|X} \oplus \mathcal{O}_D) \ &\mapsto X[2] = X[1] \amalg_D \mathbb{P}(\mathcal{N}_{D|X} \oplus \mathcal{O}_D) \ &\mapsto X[3] = \dots \end{aligned}$$

 Gross–Siebert/Abramovich–Chen: The case D ⊂ X is log smooth. Record contact orders using "log structures"

Definition

A log structure on X is a sheaf of monoids \mathcal{M}_X together with a map $\alpha : \mathcal{M} \longrightarrow (\mathcal{O}_X, \cdot)$ inducing an isomorphism $\alpha^{-1}(\mathcal{O}_X^{\times}) \simeq \mathcal{O}_X^{\times}$. A log scheme (X, \mathcal{M}_X) is a scheme with a log structure.

Definition

The **ghost sheaf** of a log scheme (X, \mathcal{M}_X) is the sheaf of monoids

$$\overline{\mathcal{M}}_X := \mathcal{M}_X / \alpha(\mathcal{O}_X^{\times}).$$

Definition

The **tropicalization** $\Sigma(X)$ of a log scheme (X, \mathcal{M}_X) is the cone complex

$$\coprod_\eta (\overline{\mathcal{M}}_{X,\eta})^ee_{\mathbb{R}} := \mathsf{Hom}(\overline{\mathcal{M}}_{X,\eta},\mathbb{R}_{\geq 0})/\sim$$

indexed by the generic points η of the log strata of X.

Log geometry

Example (The divisorial log structure)

Let $D \subset X$ be a divisor, and $j : X \setminus D \to X$. Define $\mathcal{M}_{(X,D)} := j_*(\mathcal{O}_{X\setminus D}^{\times}) \cap \mathcal{O}_X$, and $\alpha_X : \mathcal{M}_{(X,D)} \hookrightarrow \mathcal{O}_X$ to be the inclusion.

•
$$\mathcal{M}_{\mathbb{A}^1_t,0} = \{h \cdot t^n \mid h \in \mathcal{O}^{\star}_{\mathbb{A}^1}\}.$$

• $\overline{\mathcal{M}}_{\mathbb{A}^1_{\star},0,0} \cong \mathbb{N}$, via the isomorphism $t^n \mapsto n$.

Example (The standard log point)

Let $X := \operatorname{Spec} \mathbb{C}$, $\mathcal{M}_X := \mathbb{C}^{\times} \oplus \mathbb{N}$, and define $\alpha_X : \mathcal{M}_X \to \mathbb{C}$ as follows:

$$\alpha_X(x,n) := \begin{cases} x & \text{if } n = 0\\ 0 & \text{if } n \neq 0 \end{cases}$$

Stable log maps

Let (S, \mathcal{M}_S) be a log point and let (X, \mathcal{M}_X) be a log scheme over (S, \mathcal{M}_S) (in applications, (S, \mathcal{M}_S) will be either the trivial log point or the standard log point).

Definition

A stable log map with target X/S is a commutative diagram

where (W, \mathcal{M}_W) is a log point, and $\pi: (C, \mathcal{M}_C) \to (W, \mathcal{M}_W)$ is an integral log smooth curve, such that the underlying map of scheme $f: C \to X$ is a stable map.

The local structure of \mathcal{M}_C is defined by Fumiharu Kato.

Definition

The **combinatorial type** τ of a stable log map $f: C/W \to X/S$ consists of:

- The dual intersection graph $G = G_C$ of C, with set of vertices V(G), set of edges E(G), and set of legs L(G).
- The map $\sigma: V(G) \cup E(G) \cup L(G) \rightarrow \Sigma(X)$ mapping $x \in C$ to $(\overline{\mathcal{M}}_{X,f(x)})_{\mathbb{R}}^{\vee}$.
- The contact data $u_p \in \overline{M}_{X,f(p)}^{\vee} = \operatorname{Hom}(\overline{M}_{X,f(p)}, \mathbb{N})$ and $u_q \in \operatorname{Hom}(\overline{M}_{X,f(q)}, \mathbb{Z})$ at marked points p and nodes q of C.

Definition

Given a combinatorial type τ of a stable log map $f: C/W \to X/S$, we define the associated **basic monoid** Q by first defining its dual

$$Q_{\tau}^{\vee} = \left\{ ((V_{\eta})_{\eta}, (e_q)_q) \in \bigoplus_{\eta} \overline{M}_{X, f(\eta)}^{\vee} \oplus \bigoplus_{q} \mathbb{N} \, \Big| \, \forall q : V_{\eta_2} - V_{\eta_1} = e_q u_q \right\}$$

where the sum is over generic points η of C and nodes q of C. We then set

 $Q_{\tau} := \operatorname{Hom}(Q_{\tau}^{\vee}, \mathbb{N}).$

• Q_{τ} indeed only depends on the combinatorial type of $f: C/W \to X/S$.

Q[∨]_{\alph,\mathbb{R}} := Hom(Q_{\alph,\mathbb{R}\ge 0}) is the moduli cone of tropical curves of fixed combinatorial type.

Given a stable log map $f: C/W \to X/S$, one can show that there is a canonical map $Q \to \overline{M}_W$, where Q is the basic monoid defined by the combinatorial type of f.

Definition

A stable log map $f: C/W \to X/S$ is said to be **basic** if the natural map of monoids $Q \to \overline{M}_W$ is an isomorphism.

Theorem (Abramovich-Chen, Gross-Siebert, 2011)

The moduli space $\mathcal{M}(X/S)$ of basic stable log maps with target X/S is a Deligne-Mumford stack.

For every $g \in \mathbb{Z}_{\geq 0}$, $\beta \in H_2(X, \mathbb{Z})$ and $u = (u_1, \ldots, u_k)$ with $u_i \in |\Sigma(X)|$, we denote by $\mathcal{M}_{g,u}(X/S, \beta)$ the moduli space of genus g basic stable log maps to X/S of class β and with k marked points of contact data

$$u = u_1, \ldots, u_k.$$

Theorem (Abramovich–Chen, Gross–Siebert, 2011)

- If X/S is proper, then the moduli space M_{g,u}(X/S, β) is a proper Deligne-Mumford stack.
- If X/S is log smooth, then the moduli space $\mathcal{M}_{g,u}(X/S,\beta)$ admits a natural virtual fundamental class $[\mathcal{M}_{g,u}(X/S,\beta)]^{virt}$.

• We will work with "families" of tropical trees corresponding to log curves over basic monoids of rank equal to the dimension of the family!

Nishinou–Siebert: Toric degenerations of toric varieties and tropical curves. Duke Mathematical Journal, 2006

Attractor trees to families of tropical curves

- Construction of a (d-2)-dimensional family ρ_T of tropical curves in $M_{\mathbb{R}}$ from an attractor tree T:
 - Extend the root of *T* to infinity to obtain a tropical curve with leaves constrained to lie in the hyperplanes γ[⊥]_i.
 - Deform this tropical curve while preserving the combinatorial type and the constraints on the leaves.

Lemma (A-Bousseau)

For general constraints $\mathbf{H} = (H_1, \ldots, H_r)$, the moduli space of genus 0 log curves in X_{Σ} matching \mathbf{H} , and with tropicalization the (d - 2)-dimensional family of tropical curves ρ_T , is finite. Denote by $N_{\rho_T,H}^{\text{toric}}(X_{\Sigma})$ the number of such log curves.

Theorem (A-Bousseau)

The coefficients $F_{r,T}^{\theta}(\gamma_1, \ldots, \gamma_r)$ expressing the contribution to $F_r^{\theta}(\gamma_1, \ldots, \gamma_r)$ of an attractor tree T satisfy

$$\mathcal{F}^{\theta}_{r,T}(\gamma_1,\ldots,\gamma_r)=\mathcal{N}^{\mathrm{toric}}_{\rho_T,\mathcal{H}}(X_{\Sigma}).$$

Summary of the proof

- Construct a toric degeneration $\mathcal{X} \to \mathbb{A}^1$ of X_{Σ} and of the constraints **H** (similar as in Nishinou-Siebert).
- Degeneration formula: express the invariants $N_{\rho_T,H}^{\text{toric}}(X_{\Sigma})$ of the general fibers X_{Σ} as a sums of invariants $N_{\rho_S}^{\text{toric}}(\mathcal{X}_0)$ of the special fiber \mathcal{X}_0 , where *S* are binary trees in $M_{\mathbb{R}}$ deforming *T*.
- Show that

$$N_{\rho_{S}}^{\text{toric}}(\mathcal{X}_{0}) = \prod_{v} |\langle \gamma_{v'}, \gamma_{v''} \rangle|$$

Key technical point: theory of punctured log maps [Abramovich-Chen-Gross-Siebert] to produce log curves by gluing.

• By the flow tree formula,

$$\mathcal{F}_{r,T}^{ heta}(\gamma_1,\ldots,\gamma_r) = \sum_{\mathcal{S}} \prod_{\mathbf{v}} |\langle \gamma_{\mathbf{v}'},\gamma_{\mathbf{v}''} \rangle|$$

Towards enumerative geometry of cluster varieties

A correspondence between quiver DT and log curves in cluster varieties?

Cluster varieties and \mathbb{A}^1 curves

- $Q, N = \mathbb{Z}^{Q_0} = \bigoplus_{i \in Q_0} \mathbb{Z}s_i, M_{\mathbb{R}} = \operatorname{Hom}(N, \mathbb{R}), v_i := \langle s_i, \rangle \in M.$ • Fan in $M_{\mathbb{R}}$ containing the rays $\mathbb{R}_{>0}v_i$.
 - Toric variety \overline{X} , toric boundary \overline{D} , components $(\overline{D}_i)_{i \in Q_0}$.
- X: blow-up of \overline{X} along the codimension two loci $(1 + z^{s_i} = 0)|_{\overline{D}_i}$.
- D: strict transform of \overline{D} , (X, D): log Calabi-Yau pair.

• Complement $U = X \setminus D$, Poisson cluster variety $U = \bigcup (\mathbb{C}^*)^{|Q_0|}$.

M. Gross, P. Hacking and S. Keel, "Birational geometry of cluster algebras," Algebraic Geometry, 2, (2015) 137–175.

Geometry: rational curves in (X, D)

• \mathbb{A}^1 -curves: rational curves in X meeting D in a single point.

- \mathbb{A}^1 -curves come in (d-2)-dimensional families, where $d = |Q_0| = \dim X$.
- *M_β*: compactification of the moduli space of A¹-curves of class β ∈ H₂(X, ℤ).
- GW^{τ}_{β} : Counts 0-dimensional strata, "maximally degenerate" \mathbb{A}^{1} -curves.
 - Such counts are punctured log Gromov-Witten invariants of Abramovich–Chen–Gross–Siebert, counting A¹-curves in (X, D) of class β, with degeneration pattern τ.²

²Argüz–Gross, The Higher Dimensional Tropical Vertex, Geometry & Topology 26 (5), 2135-2235

Quiver-cluster

- Algebra: Ω_{γ}^{θ} of the quiver Q are Euler characteristics of moduli spaces of θ -stable representations of Q of dimension γ .
- Geometry: GW^τ_β of the cluster variety (X, D) attached to Q are counts of "maximally degenerate A¹-curves in (X, D) of class β.

Theorem (A-Bousseau)

Assume that the DT attractor invariants of Q are trivial. Then, there exists an explicit correspondence $\beta \rightarrow \gamma$, such that

$$\sum_{ au} {\sf GW}^{ au}_{eta} = \overline{\Omega}^{ heta}_{\gamma} \, .$$

where the sum is over all curves whose tropicalization have type τ , containing one marked leg, tracing out a subspace of $M_{\mathbb{R}}$ containing θ .

• This is compatible with the previous quiver DT-toric log GW correspondence, the cluster variety (X, D) degenerates to the toric variety $(\overline{X}, \overline{D})$, and the log GW invariants are related.

Heuristic picture of the proof.

- $U = X \setminus D$ admits a Lagrangian torus fibration with base $M_{\mathbb{R}}$.
- Counts GW^τ_β of A¹-curves in (X, D) are computed by tropical curves in M_ℝ.
- $M_{\mathbb{R}}$ is also the space of stability parameters for DT invariants and the same tropical curves describe the wall-crossing behavior of DT invariant DT^{θ}_{γ} !

Thank you for your attention !