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Nielsen Realization Problem
Diff+(Sg)
7

e
~ p
e

G Mod(S,)

[Kerckhoff '83] Every finite subgp. of Mod(S,) can be realized as a gp.
of isometries for some hyperbolic structure on Sj,.
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Non-orientable surfaces: N, = RP?4# ... #RP?
—
g

Mod(N,; k) := Diff( Ny; k)| Diffy(N,: k)

Theorem (Colin, X) Every finite group G € Mod(Ny; k) acting on
Tk (Ny) has a fixed point.



Klein Surfaces
For f:UcC—C, 0:-f = 5(0f =0y f)
O:f = %(azf‘”ayf)
® fis analytic if 05 =0
® f is antianalytic if 9, =0

® fis dianalytic if f | to any connected component is analytic or
antianalytic.

Definition: Let X be a connected surface, 0% = &.
® An atlas % = {(U;, ¢:)} is dianalytic if for U; nU; #+ @
¢; 0 ¢;_1 29 (UinU;) - ¢;(U; nUj) is dianalytic
® Two atlases %, 7 are equivalent if 7 U is dianalytic.
® A dianalytic structure is an equivalence class of dianalytic atlases.

A (X)) = set of dianalytic structures of ¥ that agree with the
smooth structure.



Definition:

* A Klein surface (X, X) is a surface ¥ together with a dianalytic
structure X

* A morphism of Klein surfaces (dianalytic map) f: (%,%X) - (¥,9)
isamap f:X X st VreX there exists dianalytic charts
xeU, f(x) eV with

Yofoptip(U)—-4(V)  dianalytic

® For f e DifX), X e #(X), define the pullback f*X as the only
structure such that

(5% - (5% is a morphism.

Definition: An orientable double cover of a non-orientable Klein surface
(X, %) is a Riemann surface (9, X°) together with

* adianalytic map 7:(5,X°%) - (X,X) unramified double cover

® an antianalytic involution ¢ : S — S such that mo o = .



Topologically: Sy-1 S

Given N, (with marked points) can always construct an orientable double
cover m:Sg_1 = Ny (unique up to iso of Riemann surfaces)

Case: g =2n+2 Case: g =2n+1

Sg-1
Sn#K = Snaéé]RP2 =]
Napy2 = Ng Napyr =
K = Klein Bottle




Remark: Every f € Diff(Ngy; k) admits exactly two liftings Sy_1 - Sy-1,
one of which preserves orientation

f e Diff* (S, 1;2k)
This choice induces

Dif N g; k) —2> Diff* (Sy_1; 2k)

| |

Mod(Ny; k) —2= Mod(S,_1: 2k)

Theorem (Hope-Tillmann; Gongalves-Guaschi-Maldonado)

1. Ifg>3, ¢:Mod(Ny)—> Mod(S,_1) Iis injective.

2. Ifk>1, ¢:Mod(Ny;k) - Mod(Sy-1;2k) is injective Vg.



Teichmuller Space

Definition: X,2) € #(X) are Teichmiiller equivalent if there is
f e Diffy(X;k) such that f:(X,%X) > (X;92) is a morphism.

Teichmdiller space:

T (Sy) = M (2] Diffy (X4 k) » {

69-6+2k  orientable

R39-3+2k  non-orientable

For m:S8,.1 = N, the orientable double cover of a
non-orientable Klein surface N,

1. The map is injective
7 Te(Ng) = Tar(Sg-1)

[(X] — [7"X]
2. The image of 7* is

T (Te(Ny)) = {[X] € Tor(Sg-1) | [07X] = [X]}
=t ng(Sg—l)a*



Nielsen Realization Theorem

® Have injections
¢ : Mod(Ngy; k) - Mod(Sy-1;2k)
7 Te(Ng) — Tar(Sg-1)
® Mod(Ngy; k) acts on J;,(Ny) by pullbacks.
For [X] € T(N,) and o € Mod(Ny; k)
7 (a-[X]) = ¢(a) 7" [X]

Theorem (Colin, X) Every finite group G € Mod(Ng; k) acting on
Tk (Ny) has a fixed point.



Proof:
Let H c Mod*(S,-1;2k) be the Sg-r —————= 8

subgp generated by ¢(G) and [o]. \ /

= H=GxZ[2¢c Mod*(S,-1;2k)

* [Wolpert] = 3 [9]e€Tok(Sg-1) fixed by H
In particular [o]-[D] = [¢*D] = [D]
= [Y]=7"[X] forsome [X]eT(N,)

e Thus, Vae G

m (- [X]) = ¢(a) 77 [X]
=7 [X]

©* monomorphism = «-[X]=[X] o
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Non-existence of sections

Theorem (Colin, X.) If g > 35, the projection p: Dif{ Ny) - Mod(N)
does not have a section.

Use characteristic clases:
For ¢:E — B smooth (orientable) surface bundle,

e T, FE = vertical bundle
=ker{dp:TFE - TB}
® T,E = 2-dim oriented vector bundle /E
e e H*(E;Z) Euler class

Definition: Miller-Morita-Mumford classes for &
k() =€ (e(TLE)™) e H*"(B; Z)

where & :H*(E;Z) —~ H**(B;Z) is the umkehr map.



Becker-Gottlieb transfer: trf}E :Y°B, - X*°F,

trf*

H*(B)——>H*(F)—~H*(B)
x(F)
Oriented case: trff*(x) = 5!(95 U e(TvE)"“)

= k(&) = trfg(e(TvE)”)

and thus
ko (€) = trf? (p1 (T, E)")

p1 = first Pontryagin class

Non-oriented case:  7: E — B non-oriented surface bundle

G(n) = trfy (p(TVE)') € HY(B;Z)



Theorem (Ebert — Randall-Williams)

If _ E E .
non-orientable orientable
surface bundle N % double cover

B

then, forn >0

L. kon(7) =2 Cu(n)
2. 2R9n1 (77) = 0

Universal surface bundles

Ny

E Sg-1
n 13
BDiff(Ng) BDiff(Sg_l)



Have classes:

ki € H*(BDIf(S,); Z) = H*(Mod(S,); Z)

¢ € HY(BDIfN,); Z) = H*(Mod(N,); Z)



Have classes:

w; € H*'(BDIff(S,); Z) = H*(Mod(S,);Z)

¢ € HY(BDIfN,); Z) = H*(Mod(N,); Z)

Theorem (Miller, Morita, Harer) There is a homomorphism
Q[Kla R2,.. ] - H*(MOd(Sq)v Q)

which is an iso in the stable range » < %(g— 1).

Theorem (Wahl; Galatius-Madsen-Tillmann-Weiss)

Q[¢1,62,- -+ ] — H*(Mod(N,); Q)

which is iso in the stable range * < 2.

= ¢#0 in HY%(—Q) if g>16i+3



1. For ¢: Mod(Ny) - Mod(Sy-1), ¢*(k2i)=2-G.

2. For p: Diff5(N,) - Mod(N,), then  p*(¢;)=0  if i>2.



1. For ¢: Mod(Ny) - Mod(Sy-1), ¢*(k2i)=2-G.

2. For p: Diffs(Ng) - Mod(Ny), then  p*((;) =0

Proof (of theorem): If there was a section

Diff Ny) H*(Diff(Ng); Q)

1> 2.

pl > p*T L P (G) = G # 0

Mod(N,) H*(Mod(N,); Q)

Fori=2, (+0 if ¢g>16(2)+3=35

But by the Lemma p*({;) =0fori>2. O

g>16i+3



Farrell Cohomology
Definition: Let T' gp with n =vcd(I') < o0 and M any I'-module

H*(I;M):=H" (Homp(ﬁ;M))

HY(T; M) = HY(T; M) for i > n.

H(T'; M) are torsion groups
H(TyZ) = [[H* (T Z) )
P
* T has p-periodic cohomology if H*(I';Z)(,) = H*4T;Z) )

® Brown's Formula:

O (T;Z) ¢y = [1 H (N(Zp): Z) ()
ZpeS



Let T" gp. of finite vdc and 7 < T of odd prime order p.

1 A r T/A 1

]

_

mod p

H*(IZ) — H*(mZ) —— Fplu] € H* (m;F)p)
3 a max. m =m(x,T") such that
im(H(D;2) > H*(m;2)) € Fy[u™] € H* (m;F,)

® Yagita invariant: Y/(T',p) =l.c.m.{2-m(m,T) | # <T order p}
e If ' p-periodic gp of finite ved, then Y (T, p) = p(T').

Theorem (Colin, X.) Let g > 2, p odd prime. If Mod(N4;1) contains
p-torsion, then the p-period is 4.



Proof:

GL3(R) —= GLs(R)

Faithful
repres.

dfzo :TzoNg — TZ()Ng

|

®C___ 5 Dif(Ng;1) ¥

-

75 Mod(N

9;1)

First Chern class ]

0+v

2
C
¢ H*BGL;(R) <—— H*BGL(R) o
H*(B%) <———— H" BDIff(Ny; 1)
H*(Bﬂ').b H*BMOd(Ng71) .

O+e



Fixed point data
Fixed point data for diffeo’s: Let ¢ € Diff"(.S,) of order p,

<¢>=Zlp C S,
Sing(< ¢ >) = {x;} = (finite) set of fixed points

® ¢ acts by rotation on T}, (S;) w.r.t. a fixed RS structure

Let 0<Bi<p st. ¢% actsby mult. by e2mi/P

5(¢) = (ﬂlw . 'aﬂt)

[Nielsen] ¢1, @2 of order p are conjugated <> 0(¢p1) = 0(p2).

[Symonds] §(¢) depends only on the isotopy class of ¢.
So, for [¢] € Mod(S,) 5([0]) = (B1,- .-, Br)

* [#1], [¢2] € Mod(Sy) conjugated < ([¢1]) = 6([¢2])-



Fixed point data non-orientable case: For ¢ € Dif{ N,) of order p

5(¢) = (B1,---,Bt)

® Well defined up to sign.
° 5(¢) = 6(¢,) ~ (Bla e 75t) = (Elﬁiv' . '7€q61€)7 & = +1

Non-orientable case, marked points: For ¢ € Diff(Ngy; k) of order p

5k(¢) = (ﬁlw"aﬁk ‘ ﬁk+1a"'7/8t)

where
® (B1,...,0k) ordered k-tuple, fixed point data of marked points.
® (Bk+1,-..,0:) unordered (¢ — k)-tuple.
e Similar z notion.

* Well defined on Mod(Ny) and Mod(Ny; k).



Theorem:

1. Mod(Ny; k) contains a subgroup of order p if and only if the
Riemann-Hurwitz equation

g-2=p(h-2)+t(p-1)

has an integer solution with t >k, h > 1.

2. For all g >2 and odd prime p, if Mod(Ny; k) has p-torsion then it
has p-periodic cohomology.

Theorem Let g >2, k>1 and ¢t > 1 an integer satisfying the equation

g-2=p(h-2)+t(p-1),
then,

(1,82, Br | Brss-- . Bt) subgps of Mod(N,, k) acting

Congruence classes of t-tuples Conjugacy classes of order p
with 0 < 85 <p on N, w/ t fixed points



Case g=p

Theorem: Let Z, < Mod(N,; k), with k =1,2. Then N(Z,) = D5, and
thus
Z, 1=0 mod 4

HZ(N(Zp);Z)(p):{O i=1,2,3 mod 4.

Theorem: Let p be an odd prime. Then, for k=1,2

1=0 mod 4

_ (Z,)"%
H'(Mod(Ny, k); Z) () = {0 ’ i=1,2,3 mod 4



