The Nielsen Realization Problem and the Cohomology of MCG of Non-Orientable Surfaces

Miguel A. Xicoténcatl

(Joint work with Nestor Colin)

Centro de Investigación y de Estudios Avanzados del IPN

> Hodge Theory and Related Topics IMSA Miami, 2022

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mapping Class Groups

 S_g orientable surface, genus g

$$Mod(S_g) \coloneqq \pi_0 Diff^+(S_g)$$
$$= Diff^+(S_g)/Diff_0(S_g)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Mapping Class Groups

 S_g orientable surface, genus g

$$Mod(S_g) \coloneqq \pi_0 Diff^+(S_g)$$
$$= Diff^+(S_g)/Diff_0(S_g)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Miller, Morita, Harer) $\mathbb{Q}[\kappa_1, \kappa_2, \dots] \longrightarrow H^*(Mod(S_g); \mathbb{Q})$

which is an iso in the stable range $* \leq \frac{2}{3}(g-1)$.

Mapping Class Groups

 S_g orientable surface, genus g

$$Mod(S_g) \coloneqq \pi_0 Diff^+(S_g)$$
$$= Diff^+(S_g)/Diff_0(S_g)$$

Theorem (Miller, Morita, Harer) $\mathbb{Q}[\kappa_1, \kappa_2, \dots] \longrightarrow H^*(Mod(S_g); \mathbb{Q})$

which is an iso in the stable range $* \leq \frac{2}{3}(g-1)$.

Nielsen Realization Problem

(finite)
$$G \xrightarrow{i} Mod(S_g)$$

[Kerckhoff '83] Every finite subgp. of $Mod(S_g)$ can be realized as a gp. of isometries for some hyperbolic structure on S_g .

 $Mod(S_g) \subset \mathcal{T}(S_g)$ = Teichmüller space

[Kerckhoff '83] Every finite subgp. of $Mod(S_g)$ acting on $\mathcal{T}(S_g)$ has a fixed point.

 $\mathit{Mod}(S_g) \, \subset \, \mathscr{T}(S_g)$ = Teichmüller space

[Kerckhoff '83] Every finite subgp. of $Mod(S_g)$ acting on $\mathcal{T}(S_g)$ has a fixed point.

Marked points: $Mod(S_g; k) \coloneqq Diff^+(S_g; k)/Diff_0(S_g; k)$

 $\mathcal{T}_k(S_g)$ is defined in a similar way

[Wolpert '87, Masur-Wolf '02] Every finite subgroup of $Mod^{\pm}(S_g;k)$ acting on $\mathcal{T}_k(S_g)$ has a fixed point.

 $Mod(S_g) \subset \mathcal{T}(S_g) = \text{Teichmüller space}$

[Kerckhoff '83] Every finite subgp. of $Mod(S_g)$ acting on $\mathcal{T}(S_g)$ has a fixed point.

Marked points: $Mod(S_g; k) \coloneqq Diff^+(S_g; k)/Diff_0(S_g; k)$

 $\mathcal{T}_k(S_g)$ is defined in a similar way

[Wolpert '87, Masur-Wolf '02] Every finite subgroup of $Mod^{\pm}(S_g;k)$ acting on $\mathcal{T}_k(S_g)$ has a fixed point.

Non-orientable surfaces:
$$N_g = \underbrace{\mathbb{R}\mathsf{P}^2 \# \dots \# \mathbb{R}\mathsf{P}^2}_{g}$$

$$Mod(N_g;k) \coloneqq Diff(N_g;k)/Diff_0(N_g;k)$$

Theorem (Colin, X) Every finite group $G \subseteq Mod(N_g; k)$ acting on $\mathcal{T}_k(N_q)$ has a fixed point.

Klein Surfaces

- For $f: U \subset \mathbb{C} \to \mathbb{C}$, $\partial_z f = \frac{1}{2} (\partial_x f i \partial_y f)$ $\partial_{\bar{z}} f = \frac{1}{2} (\partial_x f + i \partial_y f)$
- f is analytic if $\partial_{\bar{z}} = 0$
- f is antianalytic if $\partial_z = 0$
- f is dianalytic if f |_V to any connected component is analytic or antianalytic.

Definition: Let Σ be a connected surface, $\partial \Sigma = \emptyset$.

- An atlas $\mathscr{U} = \{(U_i, \phi_i)\}$ is dianalytic if for $U_i \cap U_j \neq \emptyset$ $\phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$ is dianalytic
- Two atlases \mathscr{U}, \mathscr{V} are equivalent if $\mathscr{U} \cup \mathscr{V}$ is dianalytic.
- A dianalytic structure is an equivalence class of dianalytic atlases.

 $\mathscr{M}(\Sigma)$ = set of dianalytic structures of Σ that agree with the smooth structure.

Definition:

- A Klein surface (Σ, 𝔅) is a surface Σ together with a dianalytic structure 𝔅
- A morphism of Klein surfaces (dianalytic map) f : (Σ, 𝔅) → (Σ', 𝔅) is a map f : Σ → Σ' s.t. ∀x ∈ Σ there exists dianalytic charts x ∈ U, f(x) ∈ V with

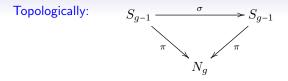
$$\psi \circ f \circ \phi^{-1} : \phi(U) \to \psi(V)$$
 dianalytic

• For $f \in Diff(\Sigma)$, $\mathfrak{X} \in \mathscr{M}(\Sigma)$, define the pullback $f^*\mathfrak{X}$ as the only structure such that

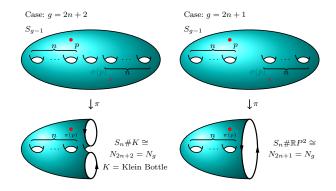
$$f: (\Sigma, f^*\mathfrak{X}) \to (\Sigma, \mathfrak{X})$$
 is a morphism.

Definition: An orientable double cover of a non-orientable Klein surface (Σ, \mathfrak{X}) is a Riemann surface (S, \mathfrak{X}^0) together with

- a dianalytic map $\pi: (S, \mathfrak{X}^0) \to (\Sigma, \mathfrak{X})$ unramified double cover
- an antianalytic involution $\sigma: S \to S$ such that $\pi \circ \sigma = \pi$.



Given N_g (with marked points) can always construct an orientable double cover $\pi: S_{g-1} \rightarrow N_g$ (unique up to iso of Riemann surfaces)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark: Every $f \in Diff(N_g; k)$ admits exactly two liftings $S_{g-1} \rightarrow S_{g-1}$, one of which preserves orientation

$$\widetilde{f} \in Diff^+(S_{g-1}; 2k)$$

This choice induces

$$\begin{array}{c} \operatorname{Diff}(Ng;k) \xrightarrow{\rho} \operatorname{Diff}^+(S_{g-1};2k) \\ & \downarrow \\ & \downarrow \\ \operatorname{Mod}(N_g;k) \xrightarrow{\phi} \operatorname{Mod}(S_{g-1};2k) \end{array}$$

Theorem (Hope-Tillmann; Gonçalves-Guaschi-Maldonado)

1. If
$$g \ge 3$$
, $\phi : Mod(N_g) \rightarrow Mod(S_{g-1})$ is injective.

2. If $k \ge 1$, $\phi : Mod(N_g; k) \to Mod(S_{g-1}; 2k)$ is injective $\forall g$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Teichmüller Space

Definition: $\mathfrak{X}, \mathfrak{Y} \in \mathscr{M}(\Sigma)$ are *Teichmüller equivalent* if there is $f \in Diff_0(\Sigma; k)$ such that $f : (\Sigma, \mathfrak{X}) \to (\Sigma; \mathfrak{Y})$ is a morphism.

Teichmüller space:

$$\mathcal{T}_k(S_g) = \mathcal{M}(\Sigma_g) / \text{Diff}_0(\Sigma_g; k) \approx \begin{cases} \mathbb{R}^{6g-6+2k} & \text{orientable} \\ \mathbb{R}^{3g-3+2k} & \text{non-orientable} \end{cases}$$

Lemma: For $\pi: S_{g-1} \to N_g$ the orientable double cover of a non-orientable Klein surface N_g ,

1. The map is injective $\pi^*: \mathcal{T}_k(N_g) \to \mathcal{T}_{2k}(S_{g-1})$ $[\mathfrak{X}] \longmapsto [\pi^*\mathfrak{X}]$ 2. The image of π^* is

$$\pi^*(\mathcal{T}_k(N_g)) = \left\{ [\mathfrak{X}] \in \mathcal{T}_{2k}(S_{g-1}) \mid [\sigma^*\mathfrak{X}] = [\mathfrak{X}] \right\}$$
$$=: \mathcal{T}_{2k}(S_{g-1})_{\sigma^*}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Nielsen Realization Theorem

• Have injections

$$\phi: Mod(N_g; k) \to Mod(S_{g-1}; 2k)$$

$$\pi^*: \mathcal{T}_k(N_g) \longrightarrow \mathcal{T}_{2k}(S_{g-1})$$

• $Mod(N_g;k)$ acts on $\mathcal{T}_k(N_g)$ by pullbacks.

Lemma: For $[\mathfrak{X}] \in \mathcal{T}_k(N_g)$ and $\alpha \in Mod(N_g; k)$

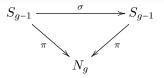
$$\pi^*\left(\alpha\cdot[\mathfrak{X}]\right) = \phi(\alpha)\cdot\pi^*[\mathfrak{X}]$$

Theorem (Colin, X) Every finite group $G \subseteq Mod(N_g; k)$ acting on $\mathcal{T}_k(N_g)$ has a fixed point.

Proof:

Let $H \subseteq Mod^{\pm}(S_{g-1}; 2k)$ be the subgp generated by $\phi(G)$ and $[\sigma]$.

$$\Rightarrow \quad H \cong G \times \mathbb{Z}/2 \subseteq Mod^{\pm}(S_{g-1}; 2k)$$



• [Wolpert] $\Rightarrow \exists [\mathfrak{Y}] \in \mathcal{T}_{2k}(S_{g-1})$ fixed by HIn particular $[\sigma] \cdot [\mathfrak{Y}] = [\sigma^* \mathfrak{Y}] = [\mathfrak{Y}]$

 $\Rightarrow [\mathfrak{Y}] = \pi^*[\mathfrak{X}] \text{ for some } [\mathfrak{X}] \in \mathcal{T}_k(N_g)$

• Thus, $\forall \alpha \in G$

$$\pi^*(\alpha \cdot [\mathfrak{X}]) = \phi(\alpha) \cdot \pi^*[\mathfrak{X}]$$
$$= \pi^*[\mathfrak{X}]$$

 π^* monomorphism $\Rightarrow \alpha \cdot [\mathfrak{X}] = [\mathfrak{X}] \square$

Non-existence of sections

Theorem (Colin, X.) If $g \ge 35$, the projection $p: Diff(N_g) \to Mod(N_g)$ does not have a section.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Non-existence of sections

Theorem (Colin, X.) If $g \ge 35$, the projection $p: Diff(N_g) \to Mod(N_g)$ does not have a section.

Use characteristic clases:

For $\xi: E \to B$ smooth (orientable) surface bundle,

•
$$T_v E$$
 = vertical bundle
= ker{ $dp: TE \rightarrow TB$ }

• $T_v E$ = 2-dim oriented vector bundle /E $e \in H^2(E;\mathbb{Z})$ Euler class

Non-existence of sections

Theorem (Colin, X.) If $g \ge 35$, the projection $p: Diff(N_g) \to Mod(N_g)$ does not have a section.

Use characteristic clases:

For $\xi: E \to B$ smooth (orientable) surface bundle,

•
$$T_v E$$
 = vertical bundle
= ker{ $dp: TE \rightarrow TB$ }

• $T_v E$ = 2-dim oriented vector bundle /E $e \in H^2(E; \mathbb{Z})$ Euler class

Definition: Miller-Morita-Mumford classes for ξ

$$\kappa_n(\xi) \coloneqq \xi_! \left(e(T_v E)^{n+1} \right) \in H^{2n}(B; \mathbb{Z})$$

where $\xi_!: H^*(E;\mathbb{Z}) \to H^{*-2}(B;\mathbb{Z})$ is the umkehr map.

Becker-Gottlieb transfer: $trf_{\xi}: \Sigma^{\infty}B_{+} \to \Sigma^{\infty}E_{+}$

$$H^{*}(B) \xrightarrow{\xi^{*}} H^{*}(F) \xrightarrow{\operatorname{trf}_{\xi}^{*}} H^{*}(B)$$

Oriented case:
$$trf_{\xi}^{*}(x) = \xi_{!}\left(x \cup e(T_{v}E)^{n+1}\right)$$

 $\Rightarrow \kappa_{n}(\xi) = trf_{\xi}^{*}(e(T_{v}E)^{n})$

and thus

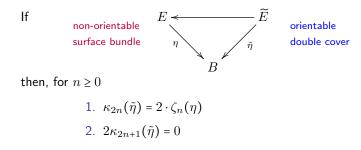
$$\kappa_{2n}(\xi) = trf_{\xi}^* \left(p_1(T_v E)^n \right)$$

 $p_1 =$ first Pontryagin class

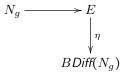
Non-oriented case: $\eta: E \rightarrow B$ non-oriented surface bundle

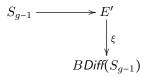
$$\zeta_i(\eta) \coloneqq trf_{\eta}^* \Big(p_1(T_v E)^i \Big) \in H^{4i}(B; \mathbb{Z})$$

Theorem (Ebert – Randall-Williams)



Universal surface bundles





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Have classes:

$$\kappa_i \in H^{2i}(BDiff(S_g); \mathbb{Z}) = H^{2i}(Mod(S_g); \mathbb{Z})$$

$$\zeta_i \in H^{4i}(BDiff(N_g); \mathbb{Z}) = H^{4i}(Mod(N_g); \mathbb{Z})$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Have classes:

$$\kappa_i \in H^{2i}(BDiff(S_g); \mathbb{Z}) = H^{2i}(Mod(S_g); \mathbb{Z})$$

$$\zeta_i \in H^{4i}(BDiff(N_g); \mathbb{Z}) = H^{4i}(Mod(N_g); \mathbb{Z})$$

Theorem (Miller, Morita, Harer) There is a homomorphism

$$\mathbb{Q}[\kappa_1,\kappa_2,\dots] \longrightarrow H^*(Mod(S_g);\mathbb{Q})$$

which is an iso in the stable range $* \leq \frac{2}{3}(g-1)$.

Theorem (Wahl; Galatius-Madsen-Tillmann-Weiss)

$$\mathbb{Q}[\zeta_1,\zeta_2,\dots] \longrightarrow H^*(Mod(N_g);\mathbb{Q})$$

which is iso in the stable range $\star \leq \frac{g-3}{4}$.

 $\Rightarrow \quad \zeta_i \neq 0 \quad \text{in} \quad H^{4i}(-;\mathbb{Q}) \quad \text{if} \quad g \ge 16i+3$

Lemma:

1. For
$$\phi : Mod(N_g) \to Mod(S_{g-1}), \quad \phi^*(\kappa_{2i}) = 2 \cdot \zeta_i.$$

2. For $p: Diff_{\delta}(N_g) \to Mod(N_g)$, then $p^*(\zeta_i) = 0$ if $i \ge 2$.

Lemma:

1. For
$$\phi : Mod(N_g) \to Mod(S_{g-1}), \quad \phi^*(\kappa_{2i}) = 2 \cdot \zeta_i.$$

2. For $p: Diff_{\delta}(N_g) \to Mod(N_g)$, then $p^*(\zeta_i) = 0$ if $i \ge 2$.

Proof (of theorem): If there was a section

For i = 2, $\zeta_2 \neq 0$ if $g \ge 16(2) + 3 = 35$

But by the Lemma $p^*(\zeta_i) = 0$ for $i \ge 2$. \Box

Farrell Cohomology

Definition: Let Γ gp with $n = vcd(\Gamma) < \infty$ and M any Γ -module

$$\widehat{H}^*(\Gamma; M) \coloneqq H^*\left(Hom_{\Gamma}(\widehat{P}; M)\right)$$

•
$$\widehat{H}^i(\Gamma; M) = H^i(\Gamma; M)$$
 for $i > n$.

• $\widehat{H}^{i}(\Gamma; M)$ are torsion groups

$$\widehat{H}^*(\Gamma;\mathbb{Z})\cong\prod_p\widehat{H}^*(\Gamma;\mathbb{Z})_{(p)}$$

- Γ has *p*-periodic cohomology if $\widehat{H}^i(\Gamma;\mathbb{Z})_{(p)} \cong \widehat{H}^{i+d}(\Gamma;\mathbb{Z})_{(p)}$
- Brown's Formula:

$$\widehat{H}^*(\Gamma;\mathbb{Z})_{(p)} \cong \prod_{\mathbb{Z}_p \in S} \widehat{H}^*(N(\mathbb{Z}_p);\mathbb{Z})_{(p)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let Γ gp. of finite vdc and $\pi \leq \Gamma$ of odd prime order p.

$$H^*(\Gamma;\mathbb{Z}) \longrightarrow H^*(\pi;\mathbb{Z}) \xrightarrow{\text{mod } p} \mathbb{F}_p[u] \subseteq H^*(\pi;\mathbb{F}_p)$$

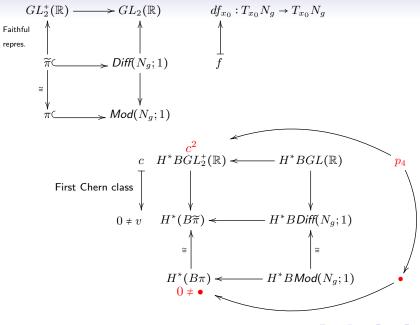
 \exists a max. $m = m(\pi, \Gamma)$ such that

$$im(H^k(\Gamma;\mathbb{Z}) \to H^k(\pi;\mathbb{Z})) \subseteq \mathbb{F}_p[u^m] \subseteq H^*(\pi;\mathbb{F}_p)$$

- Yagita invariant: $Y(\Gamma, p) = l.c.m.\{2 \cdot m(\pi, \Gamma) \mid \pi \leq \Gamma \text{ order } p\}$
- If Γ *p*-periodic gp of finite *vcd*, then $Y(\Gamma, p) = p(\Gamma)$.

Theorem (Colin, X.) Let g > 2, p odd prime. If $Mod(N_g; 1)$ contains p-torsion, then the p-period is 4.

Proof:



▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Fixed point data

Fixed point data for diffeo's: Let $\phi \in Diff^+(S_g)$ of order p,

 $<\phi>=\mathbb{Z}/p~\bigcirc~S_g$

- $Sing(\langle \phi \rangle) = \{x_i\} = (finite) \text{ set of fixed points}$
- ϕ acts by rotation on $T_{x_i}(S_g)$ w.r.t. a fixed RS structure
- Let $0 < \beta_i < p$ s.t. ϕ^{β_i} acts by mult. by $e^{2\pi i/p}$

$$\delta(\phi) \coloneqq (\beta_1, \dots, \beta_t)$$

- [Nielsen] ϕ_1, ϕ_2 of order p are conjugated $\Leftrightarrow \delta(\phi_1) = \delta(\phi_2)$.
- [Symonds] $\delta(\phi)$ depends only on the isotopy class of ϕ .

So, for $[\phi] \in Mod(S_g)$ $\delta([\phi]) \coloneqq (\beta_1, \dots, \beta_t)$

• $[\phi_1], [\phi_2] \in Mod(S_g)$ conjugated $\Leftrightarrow \delta([\phi_1]) = \delta([\phi_2]).$

Fixed point data non-orientable case: For $\phi \in Diff(N_q)$ of order p

$$\delta(\phi) \coloneqq (\beta_1, \dots, \beta_t)$$

• Well defined up to sign.

•
$$\delta(\phi) \cong \delta(\phi') \Leftrightarrow (\beta_1, \dots, \beta_t) = (\varepsilon_1 \beta'_1, \dots, \varepsilon_q \beta'_t), \quad \varepsilon_i = \pm 1$$

Non-orientable case, marked points: For $\phi \in Diff(N_g; k)$ of order p

$$\delta_k(\phi) \coloneqq (\beta_1, \ldots, \beta_k \mid \beta_{k+1}, \ldots, \beta_t)$$

where

• $(\beta_1, \ldots, \beta_k)$ ordered k-tuple, fixed point data of marked points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $(\beta_{k+1}, \ldots, \beta_t)$ unordered (t-k)-tuple.
- Similar ≅ notion.
- Well defined on $Mod(N_g)$ and $Mod(N_g;k)$.

Theorem:

1. $Mod(N_g;k)$ contains a subgroup of order p if and only if the Riemann-Hurwitz equation

$$g-2 = p(h-2) + t(p-1)$$

has an integer solution with $t \ge k$, $h \ge 1$.

2. For all g > 2 and odd prime p, if $Mod(N_g; k)$ has p-torsion then it has p-periodic cohomology.

Theorem Let g > 2, $k \ge 1$ and t > 1 an integer satisfying the equation

$$g-2 = p(h-2) + t(p-1),$$

then,

$$\left\{\begin{array}{l} \text{Congruence classes of } t\text{-tuples} \\ (1,\beta_2,\ldots,\beta_k \mid \beta_{k+1},\ldots,\beta_t) \\ \text{with } 0 < \beta_j < p \end{array}\right\} \nleftrightarrow \left\{\begin{array}{l} \text{Conjugacy classes of order } p \\ \text{subgps of } \textit{Mod}(N_g,k) \text{ acting} \\ \text{on } N_g \text{ w}/ t \text{ fixed points} \end{array}\right\}$$

Example: Case g = p

Theorem: Let $\mathbb{Z}_p \leq Mod(N_p; k)$, with k = 1, 2. Then $N(\mathbb{Z}_p) \cong D_{2p}$ and thus

$$\widehat{H}^{i}(N(\mathbb{Z}_{p});\mathbb{Z})_{(p)} = \begin{cases} \mathbb{Z}_{p} & i \equiv 0 \mod 4\\ 0 & i \equiv 1,2,3 \mod 4. \end{cases}$$

Theorem: Let p be an odd prime. Then, for k = 1, 2

$$\widehat{H}^{i}(\operatorname{Mod}(N_{p},k);\mathbb{Z})_{(p)} = \begin{cases} (\mathbb{Z}_{p})^{\frac{p-1}{2}} & i \equiv 0 \mod 4\\ 0 & i \equiv 1,2,3 \mod 4 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ