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Outline of the talk

The nilpotent orbit theorem was proved by Schmid in 1973.

It describes the asymptotic behavior of the Hodge filtration in
a polarized variation of Hodge structure on the punctured disk.

Plan for today:
I Sketch Schmid’s original proof (when the eigenvalues of

the monodromy operator are roots of unity).
I Explain a new proof that works in general.
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Complex Hodge structures

Some basic terminology. . .

Recall that a Hodge structure of weight n on a complex vector
space V is simply a decomposition

V =
⊕

p+q=n
V p,q.

A hermitian pairing Q : V ⊗C V → C is called a polarization if
1. The decomposition is orthogonal.
2. 〈v ,w〉 =

∑
p,q

(−1)qQ(vp,q,wp,q) is positive definite.

The Hodge structure is determined by the Hodge filtration

F p = V p,q ⊕ V p+1,q−1 ⊕ V p+2,q−2 ⊕ · · ·

because of the identity

V p,q = F p ∩ (F p+1)⊥.

This is only true if we have a polarization!
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The period mapping

Consider a polarized variation of Hodge structure on

∆∗ =
{

t ∈ C
∣∣∣ 0 < |t| < 1

}
=

It can be described by its period mapping Φ: H→ D.

Pull back to the universal covering space

H =
{

z ∈ C
∣∣∣ Re z < 0

}
=

Let V be the vector space of multivalued flat sections.
I Hermitian pairing Q on V (from the polarization).
I Monodromy operator T ∈ O(V ,Q) (from z 7→ z + 2πi)
I At each point z ∈ H, we get a Hodge structure of weight

n on V , polarized by the hermitian pairing Q.
I We denote its Hodge filtration by the symbol Φ(z).
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The period mapping

The period domain D and its so-called compact dual Ď are
both complex manifolds and homogeneous spaces:

I Ď parametrizes filtrations on V (with dim F p fixed)
I Ď is homogeneous under the complex Lie group GL(V )

I D ⊆ Ď parametrizes Hodge filtrations (of Hodge
structures of weight n on V , polarized by Q)

I D is homogeneous under the real Lie group O(V ,Q)

The period mapping is holomorphic and

Φ(z + 2πi) = T · Φ(z).
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The untwisted period mapping

Now we make the period mapping single-valued. . .

The eigenvalues of T satisfy |λ| = 1. Therefore

T = Ts · Tu = e2πiS · e2πiN ,

where N ∈ End(V ) is nilpotent and S ∈ End(V ) is semisimple
with real eigenvalues (in a fixed interval of length < 1).

The expression e−z(S+N)Φ(z) is invariant under z 7→ z + 2πi :

e−(z+2πi)(S+N)Φ(z + 2πi) = e−z(S+N)e−2πi(S+N)T Φ(z)

= e−z(S+N)Φ(z).

It therefore descends to a holomorphic mapping

ΨS : ∆∗ → Ď, ΨS(ez) = e−z(S+N)Φ(z),

called the untwisted period mapping.
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The nilpotent orbit theorem

One of the main results in the theory.
I Convergence
I Approximation

Nilpotent Orbit Theorem
1. ΨS extends holomorphically across the origin.
2. The period mapping Φ is close to the nilpotent orbit

Φnil : C→ Ď, Φnil(z) = ezNFlim.

More precisely, one has Φnil(z) ∈ D for Re z � 0, and

dD
(

Φ(z),Φnil(z)
)
≤ C |Re z |me−δ|Re z|,

for certain constants C > 0, m ∈ N, and δ > 0.

Here Flim ∈ Ď is the so-called limiting Hodge filtration,

Flim = lim
Re z→−∞

e−zNΦ(z).

It is obtained from the filtration ΨS(0) ∈ Ď by making it
compatible with the decomposition into eigenspaces

V =
⊕
|λ|=1

Eλ(Ts).
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Sketch of Schmid’s original proof

Schmid assumes that the eigenvalues of T are roots of unity.
I Automatic for Hodge structures defined over Q.
I Reduce to T = e2πiN unipotent (by t 7→ tm).

With this assumption, the untwisted period mapping becomes

Ψ: ∆∗ → Ď, Ψ(ez) = e−zNΦ(z).

Let me sketch the proof for why Ψ extends across the origin.

z

z + w
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Sketch of Schmid’s original proof

Idea: Show that the derivative of

H→ Ď, z 7→ e−zNΦ(z)

is of order |Re z |me−ε|Re z|, and then integrate.

For fixed z ∈ H, consider the holomorphic mapping

Φz : C→ Ď, w 7→ e−wNΦ(z + w).

It is again invariant under w 7→ w + 2πi .

Moreover, Φz(w) stays close to Φ(z) for |Rew | ≤ ε|Re z |:
I Period mappings are “distance decreasing”:

dD
(

Φ(z + w),Φ(z)
)
≤ C |w |
|Re z |

I The distance between Φ(z) and a fixed base point in D is
bounded by C |Re z |m.

I The nilpotent operator N is also of order |Re z |−1.
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Sketch of Schmid’s original proof

Conclusion: Φz(w) stays in a coordinate neighborhood of
Φ(z), for w in a vertical strip of width ε|Re z |.

z

z + w

ε|Re z|

If f : Uε|Re z| → C is holomorphic and f (w + 2πi) = f (w), then

|f ′(0)| ≤ e−ε|Re z| sup
w∈Uε|Re z|

|f (w)|.

The derivative of Φz at w = 0 is therefore of order

C |Re z |me−ε|Re z|,

and the extra factor e−zN can be handled by increasing m.
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What happens when T is not unipotent?

Recall that, in the general case, we have

ΨS : ∆∗ → Ď, ΨS(ez) = e−z(S+N)Φ(z),

where S is semisimple with real eigenvalues. The expression

w 7→ e−w(S+N)Φ(z + w),

is still holomorphic and invariant under w 7→ w + 2πi , but the
eigenvalues of the extra factor e−wS are of size e−α|Re w |.

I This contributes terms that are exponential in |Re z |.
I But the initial estimates only give |Re z |−1.

Therefore Schmid’s argument breaks down completely.
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New proof

In the remainder of the talk, I will try to describe a new proof
for the nilpotent orbit theorem that works in general.

Nilpotent Orbit Theorem
1. ΨS extends holomorphically across the origin.
2. The period mapping Φ is close to the nilpotent orbit

Φnil : H→ Ď, Φnil(z) = ezNFlim.

More precisely, one has Φnil(z) ∈ D for Re z � 0, and

dD
(

Φ(z),Φnil(z)
)
≤ C |Re z |me−δ|Re z|,

for certain constants C > 0, m ∈ N, and δ > 0.

The main ingredients are
I Curvature properties of the Hodge metric.
I Hörmander’s L2-estimates.
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ΨS : ∆∗ → Ď, ΨS(ez) = e−z(S+N)Φ(z),

where S is semisimple with real eigenvalues. The expression

w 7→ e−w(S+N)Φ(z + w),

is still holomorphic and invariant under w 7→ w + 2πi , but the
eigenvalues of the extra factor e−wS are of size e−α|Re w |.

I This contributes terms that are exponential in |Re z |.
I But the initial estimates only give |Re z |−1.

Therefore Schmid’s argument breaks down completely.



Complex variations of Hodge structure

First some background. . .

Let E be smooth vector bundle on a complex manifold,
together with a flat connection d : A0(E )→ A1(E ).
A variation of Hodge structure (VHS) of weight n on E is a
decomposition into smooth subbundles

E =
⊕

p+q=n
E p,q,

such that the flat connection d takes A0(E p,q) into

A1,0(E p,q)⊕ A1,0(E p−1,q+1)⊕ A0,1(E p,q)⊕ A0,1(E p+1,q−1).

This gives a decomposition d = ∂ + θ + ∂̄ + θ∗. The operator

θ : A0(E p,q)→ A1,0(E p−1,q+1)

is called the Higgs field.

Note. The Higgs field is important because it is the derivative
of the period mapping. (More on this later.)
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Complex variations of Hodge structure

Alternative holomorphic description:
I The operator d ′′ = ∂̄ + θ∗ turns E into a holomorphic

vector bundle E .
I The Hodge bundles F pE = E p,q ⊕ E p+1,q−1 ⊕ · · · are

holomorphic subbundles F pE .
I The operator d ′ = ∂ + θ defines a holomorphic

connection ∇ on E .
I The Hodge bundles satisfy ∇(F pE ) ⊆ Ω1 ⊗ F p−1E .
I The operator ∂̄ turns E p,q into a holomorphic vector

bundle E p,q, and E p,q ∼= F pE /F p+1E .
I The Higgs field θ is just the holomorphic operator

F pE /F p+1E → Ω1 ⊗ F p−1E /F pE

induced by ∇.
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Complex variations of Hodge structure

A polarization of a VHS E is a hermitian pairing

Q : A0(E )⊗A0 A0(E )→ A0

that is flat with respect to d , such that

hE (v ,w) =
∑

p+q=n
(−1)qQ(vp,q,wp,q)

is a positive definite hermitian metric on E , and the Hodge
decomposition becomes orthogonal.

This hermitian metric on E is called the Hodge metric.
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Curvature of the Hodge metric

The curvature operator of the Hodge metric on E p,q is

Θ = −(θθ∗ + θ∗θ).

Unfortunately, the expression

hE
(

Θ∂/∂t∧∂/∂ t̄u, u
)

= hE
(
θ∂/∂tu, θ∂/∂tu

)
− hE

(
θ∗∂/∂ t̄u, θ∗∂/∂ t̄u

)
is, in general, neither positive nor negative definite.

Basic Estimate (Simpson)
Viewing θ∂/∂t as a section of End(E ), one has

hEnd(E)

(
θ∂/∂t , θ∂/∂t

)
≤ C0

|t|2(− log|t|)2 .

It follows that metrics of the form hE · |t|a(− log|t|)b have
I positive curvature for b � 0,
I negative curvature for b � 0.

This is the main technical point! (Cornalba-Griffiths, Simpson)

Complex variations of Hodge structure

A polarization of a VHS E is a hermitian pairing

Q : A0(E )⊗A0 A0(E )→ A0

that is flat with respect to d , such that

hE (v ,w) =
∑

p+q=n
(−1)qQ(vp,q,wp,q)

is a positive definite hermitian metric on E , and the Hodge
decomposition becomes orthogonal.

This hermitian metric on E is called the Hodge metric.



Broad outline of the new proof

We have an induced variation of Hodge structure

End(E ) =
⊕

k
End(E )k,−k .

View θ∂/∂t as a section of End(E )−1,1; holomorphic because

[∂̄, θ] = 0.

But as a section of End(E ), it is not holomorphic:

[d ′′, θ] = [∂̄ + θ∗, θ] = [θ∗, θ] 6= 0.

Step 1. We lift tθ∂/∂t to a holomorphic section ϑ of the
Hodge bundle F−1 End(E ), such that

ϑ ≡ tθ∂/∂t mod F 0 End(E ).

We also obtain an estimate of the form∫
∆∗

hEnd(E)(ϑ, ϑ)|t|a(− log|t|)bdµ ≤ C .

For this, we use Hörmander’s L2-estimates; the key point is
that hEnd(E) · |t|a(− log|t|)b has positive curvature for b � 0.
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Broad outline of the new proof

Step 2. Pulling back to H, we get a holomorphic mapping

ϑ : H→ End(V )

such that ϑ(z + 2πi) = Tϑ(z)T−1. Untwisting gives

B : ∆∗ → End(V ), B(ez) = e−z(S+N)ϑ(z)ez(S+N).

For suitable a > −2 and b � 0, the L2-estimate implies that
B extends holomorphically across the origin.

Step 3. The tangent space to Ď at the point Φ(z) ∈ Ď is

TΦ(z)Ď ∼= End(V )/F 0 End(V )Φ(z).

The derivative of the period mapping Φ: H→ Ď is

θ∂/∂z mod F 0 End(V )Φ(z).

Therefore the derivative of z 7→ ΨS(ez) = e−z(S+N)Φ(z) is

e−z(S+N)θ∂/∂zez(S+N) − (S + N)

≡ B(ez)− (S + N) mod F 0 End(V )ΨS (ez ).

The operator on the right-hand side is holomorphic!
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Broad outline of the new proof

Step 4. Let g : H→ GL(V ) be the unique (holomorphic)
solution of the initial value problem

g ′(z) =
(
B(ez)− (S + N)

)
· g(z), g(−1) = id .

Then g(z)−1ΨS(ez) is constant, and therefore

ΨS(ez) = g(z) ·ΨS(e−1).

The ODE has a regular singular point at t = 0, and so

g(z) = M(ez) · eAz

with M : ∆∗ → GL(V ) meromorphic and A ∈ End(V ).
Since ΨS(ez) is single-valued, we get

ΨS(t) = M(t) ·ΨS(e−1),

and because Ď is projective, it follows that ΨS extends.

Disadvantage of this proof
Unlike Schmid’s proof, the argument so far does not give a
good estimate for how quickly ΨS(t) converges to ΨS(0).
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Broad outline of the proof

Now we derive such estimates. . .

Step 5. Since ΨS : ∆→ Ď is holomorphic, the derivative of

z 7→ ΨS(ez) = e−z(S+N)Φ(z)

is of order |ez | = e−|Re z|.

Recall that the derivative is also equal to

e−z(S+N)θ∂/∂zez(S+N) − (S + N) mod F 0 End(V )ΨS (ez ).

By analyzing this expression, one can show that

‖θ∂/∂z − N−1,1‖2
Φ(z) +

∑
k≤−2
‖Nk,−k‖2

Φ(z) ≤ C |Re z |2me−2δ|Re z|

∑
k≤−1
‖Pk,−k

λ ‖2
Φ(z) ≤ C |Re z |2me−2δ|Re z|

for |Re z | � 0. Here Pλ ∈ End(V ) is the projection to the
λ-eigenspace of Ts , and ‖−‖Φ(z) is the Hodge norm.

I The constants δ > 0 and m ∈ N only depend on (V ,T ).
I But no information about the value of C > 0!
I Also no information about how big |Re z | needs to be!
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Broad outline of the proof

Step 6. We can use the maximum principle to show that the
above inequalities actually hold for

Re z ≤ x < 0,

with a constant C > 0 that only depends on x , rk E , and on
the Hodge norms ‖N‖Φ(−1) and ‖Pλ‖Φ(−1).

The two operators

θ∂/∂z −
∑

k≤−1
Nk,−k and

∑
k≤−1

Pk,−k
λ

are holomorphic sections of the bundle End(E )/F 0 End(E ).

The key point is that the metric hEnd(E) · (− log|t|)b on this
bundle has negative curvature for b � 0.

Negative curvature (in the sense of Griffiths)
A metric h on a bundle E has negative curvature iff

log h(s, s)

is (pluri-)subharmonic for every holomorphic section s.

Broad outline of the proof

Now we derive such estimates. . .

Step 5. Since ΨS : ∆→ Ď is holomorphic, the derivative of

z 7→ ΨS(ez) = e−z(S+N)Φ(z)

is of order |ez | = e−|Re z|.

Recall that the derivative is also equal to

e−z(S+N)θ∂/∂zez(S+N) − (S + N) mod F 0 End(V )ΨS (ez ).

By analyzing this expression, one can show that

‖θ∂/∂z − N−1,1‖2
Φ(z) +

∑
k≤−2
‖Nk,−k‖2

Φ(z) ≤ C |Re z |2me−2δ|Re z|

∑
k≤−1
‖Pk,−k

λ ‖2
Φ(z) ≤ C |Re z |2me−2δ|Re z|

for |Re z | � 0. Here Pλ ∈ End(V ) is the projection to the
λ-eigenspace of Ts , and ‖−‖Φ(z) is the Hodge norm.

I The constants δ > 0 and m ∈ N only depend on (V ,T ).
I But no information about the value of C > 0!
I Also no information about how big |Re z | needs to be!



The reasoning in a toy example

Let ϕ be a subharmonic function on ∆∗, and suppose that

ϕ ≤ C − δ log|t|2

on a small neighborhood of the origin, for some C > 0.

r

Then ϕ + δ log|t|2 is subharmonic and bounded near t = 0.
By the maximum principle, it achieves its maximum over any
disk |t| ≤ r somewhere along the boundary.

From this, we get the more precise estimate

ϕ + δ log|t|2 ≤ max
|t|=r

ϕ(t) + δ log r 2,

and so we can replace C by an explicit constant!
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Broad outline of the proof

Step 7. Recall the limiting Hodge filtration

Flim = lim
Re z→−∞

e−zNΦ(z) ∈ Ď.

The estimates in Step 5 control the derivative of the curve

[0,∞)→ Ď, x 7→ e−xNΦ(z + x),

which connects Φ(z) and Φnil(z) = ezNFlim.

After integration, we obtain a distance estimate of the form

dD
(

Φ(z),Φnil(z)
)
≤ C |Re z |me−δ|Re z|

(with different constants).
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More details about Step 1

We have an induced variation of Hodge structure

End(E ) =
⊕

k
End(E )k,−k .

View θ∂/∂t as a section of End(E )−1,1, holomorphic because

[∂̄, θ] = 0.

But as a section of End(E ), it is not holomorphic:

[d ′′, θ] = [∂̄ + θ∗, θ] = [θ∗, θ] 6= 0.

Step 1. We lift tθ∂/∂t to a holomorphic section ϑ of the
Hodge bundle F−1 End(E ), such that

ϑ ≡ tθ∂/∂t mod F 0 End(E ).

We also obtain an estimate of the form∫
∆∗

hEnd(E)(ϑ, ϑ)|t|a(− log|t|)bdµ ≤ C .

For this, we use Hörmander’s L2-estimates; the key point is
that hEnd(E) · |t|a(− log|t|)b has positive curvature for b � 0.
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More details about Step 1

The operator [d ′′,−] makes End(E ) into a holomorphic vector
bundle, and the derivative of tθ∂/∂t is

f = [d ′′∂/∂ t̄ , tθ∂/∂t ] = [θ∗∂/∂ t̄ , tθ∂/∂t ] ∈ A0
(

∆∗,End(E )0,0
)
,

It is therefore enough to solve the ∂̄-equation

d ′′∂/∂ t̄u = f

for u ∈ A0
(

∆∗,F 0 End(E )
)
, subject to the condition that

∫
∆∗

hEnd(E)(u, u)|t|a(− log|t|)bdµ ≤ C .

Then ϑ = tθ∂/∂t − u is the desired holomorphic section.

The input is again Simpson’s basic estimate

hEnd(E)

(
θ∂/∂t , θ∂/∂t

)
≤ C0

|t|2(− log|t|)2 ,

because it implies, for a > −2 and b ≥ 2, that∫
∆∗

hEnd(E)(f , f )|t|a+2(− log|t|)b+2dµ

≤
∫

∆∗

2C 2
0 |t|2

|t|4(− log|t|)4 |t|
a+2(− log|t|)b+2dµ < +∞.
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For this, we use Hörmander’s L2-estimates; the key point is
that hEnd(E) · |t|a(− log|t|)b has positive curvature for b � 0.



Hörmander’s L2-estimates in one dimension

Let E be a smooth vector bundle (on a domain Ω ⊆ C), with
holomorphic structure given by d ′′ : A0(E )→ A0,1(E ).
Given f ∈ A0(Ω,E ), we want to solve the ∂̄-equation

d ′′∂/∂ t̄u = f .

Suppose E has a hermitian metric h with positive curvature:
there is a positive function ρ such that

h
(

Θ∂/∂t∧∂/∂ t̄ α, α
)
≥ ρ2h(α, α)

for every compactly supported α ∈ A0
c(Ω,E ).

L2-Estimates (Hörmander)
Under these assumptions, the ∂̄-equation d ′′∂/∂ t̄u = f has a
solution u ∈ A0(Ω,E ) that satisfies the L2-estimate∫

Ω
h(u, u)dµ ≤

∫
Ω

1
ρ2 h(f , f )dµ,

provided that the right-hand side is finite.

In our setting, the metric hEnd(E) · |t|a(− log|t|)b with b � 0
meets these conditions with 1/ρ2 = |t|2(− log|t|)2.

(Explains the a + 2 and b + 2 on the previous slide. . . )
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