Functions on commuting stacks via mirror symmetry

David Nadler UC Berkeley

U of Miami April 2022

Ingredients

Ingredients:

- G reductive complex group (Ex: G = SL(n), PGL(n), GL(n), ...)
- G^{\vee} Langlands dual group (Ex: $G^{\vee} = PGL(n), SL(n), GL(n), \ldots$)
- X smooth projective complex curve.

Today's focus: X = E genus one curve.

A-side (automorphic) target

Pair $(T^*Bun_G(X), \mathcal{N}).$

- $T^*Bun_G(X)$ exact symplectic derived stack.
- $\mathcal{N} \subset T^* Bun_G(X)$ closed conic Lagrangian.

Construction:

- $Bun_G(X)$ moduli of G-bundles on X (smooth stack).
- $T^*Bun_G(X)$ Higgs moduli (symplectic derived stack).
- $\mathcal{N} = \chi^{-1}(0)$ nilpotent cone (closed conic Lagrangian).

 $\chi : \mathcal{T}^* \mathsf{Bun}_{\mathcal{G}}(X) \to \mathfrak{c}_{\mathcal{G}}(X)$ Hitchin system induced by characteristic polynomial $\mathfrak{g}^* \to \mathfrak{h}^* /\!\!/ W$.

Informally:

- $T^*Bun_G(X)$ is a "Weinstein manifold" with core $Bun_G(X)$.
- $\bullet \ \mathcal{N}$ defines a "stop" at infinity.

Question

Does pair $(T^*Bun_G(X), \mathcal{N})$ come from a "Weinstein pair"?

• Extra credit: Functorial in X?

A-branes: $A_G(X) = Sh_{\mathcal{N}}(Bun_G(X))$

dg derived category of complexes of sheaves on $\operatorname{Bun}_G(X)$, singular support (Kashiwara-Schapira) lying in $\mathcal{N} \subset T^*\operatorname{Bun}_G(X)$. Informally: partially wrapped branes for pair ($T^*\operatorname{Bun}_G(X), \mathcal{N}$).

Example (G = GL(1))

- Pair (T*Pic(X), 0-section).
- $A_G(X)$ dg derived category of local systems on Pic(X).

B-side (spectral/Galois) target

Pair $(Loc_{G^{\vee}}(X), \mathcal{N}^{\vee}).$

- $Loc_{G^{\vee}}(X)$ quasi-smooth derived stack.
- $\mathcal{N}^{\vee} \subset T^*[-1]\mathsf{Loc}_{\mathcal{G}^{\vee}}(X)$ closed conic support condition.

Construction:

- $Loc_{G^{\vee}}(X)$ moduli of G^{\vee} -local systems on X (affine scheme/linear group).
- $T^*[-1]Loc_{G^{\vee}}(X)$ shifted cotangent bundle (classical stack).
- $\mathcal{N}^{\vee} = \chi^{-1}(0)$ nilpotent cone (closed conic subset). $\chi : T^*[-1] \operatorname{Loc}_{G^{\vee}}(X) \to (\mathfrak{g}^{\vee})^*/G^{\vee} \simeq \mathfrak{h}/\!/W$ induced by Chevalley isomorphism $T^*[1]BG^{\vee} \simeq (\mathfrak{g}^{\vee})^*/G^{\vee} \simeq \mathfrak{h}/\!/W$.

Informally:

- $Loc_{G^{\vee}}(X)$ is a "singular variety".
- \mathcal{N}^{\vee} support condition for "singularities/matrix factorizations".

B-side (spectral/Galois) branes

B-branes: $B_{G^{\vee}}(X) = \operatorname{IndCoh}_{\mathcal{N}^{\vee}}(\operatorname{Loc}_{G^{\vee}}(X))$

dg derived category of ind-coherent sheaves on $Loc_{G^{\vee}}(X)$, singular support (Arinkin-Gaitsgory) lying in $\mathcal{N}^{\vee} \subset T^*[-1]Loc_{G^{\vee}}(X)$. Smooth *B*-branes: $B^{\circ}_{G^{\vee}}(X) = QCoh(Loc_{G^{\vee}}(X))$

- dg derived category of quasi-coherent sheaves on $Loc_{G^{\vee}}(X)$.
- $B^{\circ}_{G^{\vee}}(X)$ tensor action on $B_{G^{\vee}}(X)$.
- $B_{G^{ee}}(X)$ inverse image of branes supported on \mathcal{N}^{ee} within

 $Sing(Loc_{G^{\vee}}(X)) = (IndCoh/QCoh)(Loc_{G^{\vee}}(X))$

Example (G = GL(1))

- Pair (Loc₁(X), 0-section).
- $B_G(X) = B^{\circ}_G(X) = \operatorname{QCoh}(\operatorname{Loc}_1(X)).$

B-side (spectral/Galois) is topological

Observation

Pair $(Loc_{G^{\vee}}(X), \mathcal{N}^{\vee})$ only depends on topology of X.

$$\begin{array}{rcl} \mathsf{Loc}_{G^{\vee}} &\simeq& \mathsf{Hom}(\pi_1(X,x_0),G^{\vee})/G^{\vee} \\ &\simeq& ((G^{\vee})^{2g}\times_{G^{\vee}}\{1\})/G^{\vee} \end{array}$$

Consequence

B-branes $B_{G^{\vee}}(X), B_{G^{\vee}}^{\circ}(X)$ only depend on topology of X.

Spectral action

Chiral integration of spherical Hecke operators (modifications of G-bundles at points of X) provides:

Theorem (Spectral action, N-Yun)

Tensor action of smooth B-branes $B_G^{\circ}(X)$ on all A-branes $A_G(X)$.

Consequence

fix an A-brane $L_{\mathcal{O}}$ to obtain action functor:

$$\alpha: B^{\circ}_{\mathcal{G}}(X) \to A_{\mathcal{G}}(X) \qquad \alpha(V) = V \star L_{\mathcal{O}}$$

By construction: $\alpha(\mathcal{O}) = L_{\mathcal{O}}$.

Question

What should we take for $L_{\mathcal{O}}$?

Whittaker object

Recall:

 Hitchin system: χ : T*Bun_G(X) → c_G(X) induced by characteristic polynomial g* → h*//W.

Hitchin-Kostant section:

• $\kappa : \mathfrak{c}_G(X) \to T^* \operatorname{Bun}_G(X)$ induced by Kostant section $\mathfrak{h}^* / / W \to \mathfrak{g}^*$ ("rational normal form").

Image Lagrangian:

•
$$L_{\mathcal{O}} = \kappa(\mathfrak{c}_{\mathcal{G}}(X)).$$

• Intersects $\mathcal{N} \subset T^*Bun_G(X)$ transversely at smooth point

$$\xi = \mathcal{L}_{\mathcal{O}} \cap \mathcal{N}$$

Definition

Whittaker object: $Wh \in A_G(X)$ sheaf corepresenting:

Microstalk at $\xi = L_{\mathcal{O}} \cap \mathcal{N}$ *.*

Informally: "Floer pairing $CF^*(L_{\mathcal{O}}, -)$ ".

Betti Langlands conjecture (unramified)

Conjecture (Betti Langlands conjecture)

Spectral action on Wh extends to $B^{\circ}_{G}(X)$ -equivariant equivalence

 $B_{G^{\vee}}(X) \xrightarrow{\sim} A_G(X)$

Conjecture (Reality check...)

A-side (automorphic) category $A_G(X)$ only depends on topology of X.

Remark

Work of N-Shende implies invariance of A-branes on stable Higgs bundles when smooth Weinstein manifold (e.g. ramified with generic parameters).

Betti Langlands conjecture (unramified) status

Theorem (Derived Satake, Bezrukavnikov-Finkelberg)

 $B_{G^{\vee}}(\mathbb{P}^1) \stackrel{\sim}{
ightarrow} A_G(\mathbb{P}^1)$

Remark

Bezrukavnikov has also proved fundamental tamely ramified cases:

- "disk" (\mathbb{P}^1 with 1 marked point)
- "cylinder" (\mathbb{P}^1 with 2 marked points).

Main result of today:

Theorem (Genus one, Li-N-Yun)

For E of genus one, Betti Langlands holds:

 $B_{G^\vee}(E) \stackrel{\sim}{\to} A_G(E)$

Fix X = E genus one, find stack of commuting pairs

$$\mathsf{Loc}_{G^{\vee}}(E) = \{(g_1,g_2) \in G^{\vee} \times G^{\vee} \mid [g_1,g_2] = e\}/G^{\vee}$$

- (Affine scheme $\subset G^{\vee} \times G^{\vee})/$ (linear group G^{\vee}).
- Affine is quasi-smooth but derived: (G[∨] × G[∨]) ×_{G[∨]} {e}.

Question

What is ring of functions $\mathcal{O}(\operatorname{Loc}_{G^{\vee}}(E))$?

Fix X = E genus one. Calculation of "wrapped Floer cochains" of Wh_G:

Theorem (Li-N-Yun)

Assume G is adjoint type. Then

$$\mathsf{End}(\mathsf{Wh}_{\mathcal{G}}) \simeq \mathcal{O}(\mathcal{T}^{ee} imes \mathcal{T}^{ee} imes \mathfrak{t}^{ee}[-1])^W$$

Corollary

Assume G^{\vee} is simply-connected. Then

$$\mathcal{O}(\mathsf{Loc}_{\mathsf{G}^{ee}}(\mathsf{E}))\simeq \mathcal{O}(\mathsf{T}^{ee} imes \mathsf{T}^{ee} imes \mathfrak{t}^{ee}[-1])^W$$

How to calculate $End(Wh_G)$ in genus one?

Rest of talk will be on A-side.

Work with tamely ramified A-branes $A_G(X, S)$, for marked points $S \subset G$. First, reduce from genus one curve to genus zero with two marked points. Universal affine Hecke category $\mathcal{H}_{LG} = Sh_{\mathcal{N}}(I^{\circ} \setminus LG/I^{\circ})$.

Theorem (N-Yun, Li-N-Yun)

Bubbling degeneration P¹ → P¹ ∨ P¹ equips A_G(P¹, {0,∞}) with monoidal structure equivalent to universal affine Hecke category

$$\mathcal{H}_{LG}\simeq A_G(\mathbb{P}^1,\{0,\infty\})$$

 Tate nodal degeneration E → E₀ provides equivalence from cocenter, ie Hochschild homology category, compatible with Whittaker objects

 $hh(\mathcal{H}_{LG}) \xrightarrow{\sim} A_G(E)$

How to calculate $End(Wh_G)$ in cocenter?

Next, must make calculations in cocenter $hh(\mathcal{H}_{LG})$. Strategy: replace

algebra of cocenter $hh \rightsquigarrow$ geometry of conjugacy classes in LG

Assume for simplicity G is simply-connected.

 I^a simple roots of loop group LG.

 $P_J \subset LG$ standard parahoric, $G_J \subset LG$ standard Levihoric, $J \subsetneq I^a$.

 $\mathcal{H}_{G_J} = Sh_{\mathcal{N}}(U \setminus G_J/U)$ universal finite Hecke category.

Theorem (universal version of Tao-Travkin result)

There is a natural equivalence in monoidal categories

 $\mathsf{colim}_{J \subset I^a} \mathcal{H}_{G,J} \overset{\sim}{\to} \mathcal{H}_{LG}$

 $X_{LG,J} = LG/P_J$ Lusztig's parahoric character sheaf space.

Corollary

 $hh(\mathcal{H}_{LG}) = \operatorname{colim}_{J \subset I^a} hh(\mathcal{H}_{G_J}, \mathcal{H}_{LG}) \simeq \operatorname{colim}_{J \subset I^a} Sh_{\mathcal{N}}(X_{LG,J})$

How to calculate $End(Wh_G)$ in parahoric character sheaves?

Next, must make calculations in $\operatorname{colim}_{J \subset I^{a}} Sh_{\mathcal{N}}(X_{LG,J})$. Strategy: replace

parahoric character sheaves $hh(\mathcal{H}_{G_J}, \mathcal{H}_{LG}) \simeq Sh_{\mathcal{N}}(X_{LG,J})$

 \rightsquigarrow traditional character sheaves $hh(\mathcal{H}_{G_J}, \mathcal{H}_{G_J}) \simeq Sh_{\mathcal{N}}(G_J/G_J)$

Arrive at main technical result: prove conjecture of Li-N.

Theorem (Li-N-Yun)

The natural map is fully faithful

 $\operatorname{colim}_{J \subset I^a} Sh_{\mathcal{N}}(G_J/G_J) \simeq \operatorname{colim}_{J \subset I^a} hh(\mathcal{H}_{G,J}) \hookrightarrow hh(\mathcal{H}_{LG})$

Idea: Morse theory on Bruhat-Tits building of LG following He-Nie. Lowest critical energy.

How to calculate $End(Wh_G)$ in colimit of character sheaves?

Finally, must make calculations in $\operatorname{colim}_{J \subset I^2} Sh_{\mathcal{N}}(G_J/G_J)$. Strategy: use orthogonality results of Li to reduce

all character sheaves

 \rightsquigarrow Springer block of character sheaves induced from torus

When G adjoint type, arrive at:

 $\mathsf{End}(\mathsf{Wh}_{\mathsf{G}}) \simeq \mathcal{O}(\mathsf{T}^{\vee} \times \mathsf{T}^{\vee} \times \mathfrak{t}^{\vee}[-1])^{\mathsf{W}}$

Acknowledgements

Thanks to the audience for listening! Thanks to the conference organizers for the generous invitation!

