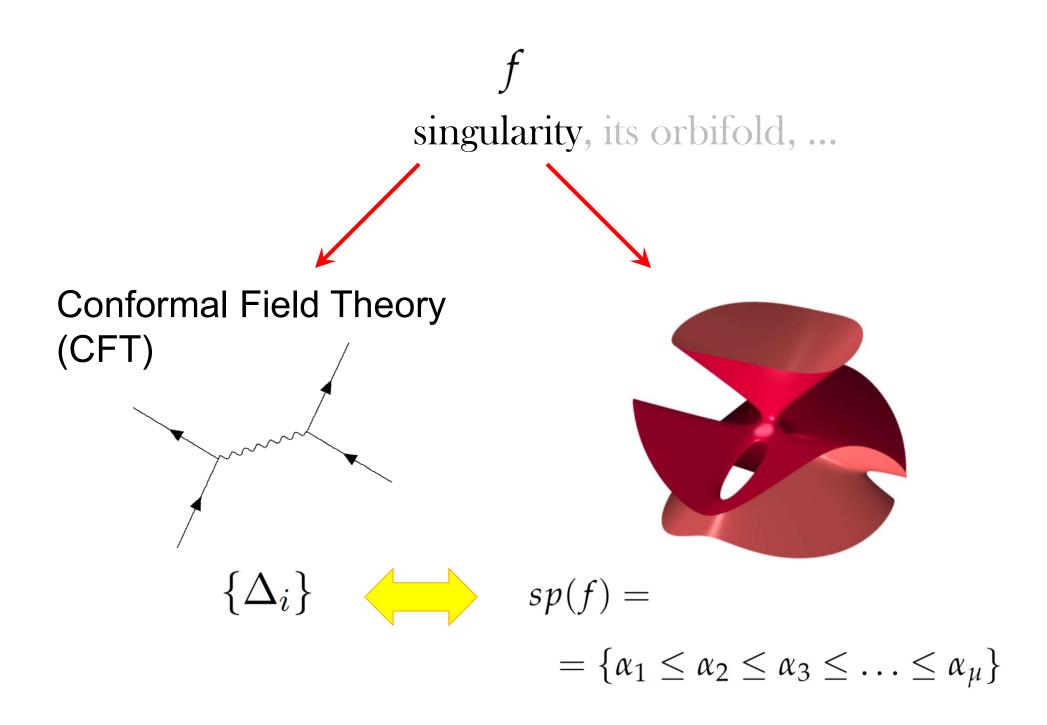
Spectra, dynamical systems, and RG flows

Based on: S.G. arXiv: 1503.01474 arXiv: 1608.06638

see also: C.Vafa, N.P.Warner (1987) C.Vafa, N.P.Warner (1989) E.J.Martinec (1989) W.Lerche, C.Vafa, N.P.Warner (1989) B.R.Greene, S.-S.Roan, S.-T.Yau (1991)

D.Xie, S.-T.Yau (2015) F.Kuipers, U.Gursoy, Y.Kuznetsov (2018) C.B.Jepsen, I.R.Klebanov, F.K.Popov (2020) C.B.Jepsen, F.K.Popov (2021)

+ work in progress w/ L.Katzarkov, K.S.Lee, J.Svoboda, ...

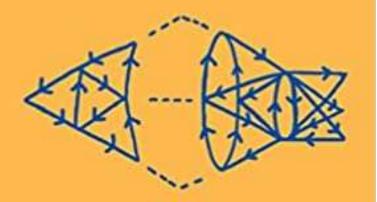


<u>Definition:</u> A *conformal field theory* is a table of integrals.

- Brian Greene

Philippe Di Francesco Pierre Mathieu David Sénéchal

Conformal Field Theory



D Springer

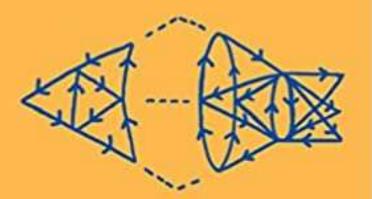
Scaling and Renormalization in Statistical Physics

CAMBRIDGE LECTURE NOTES IN PHYSICS

JOHN CARDY

Philippe Di Francesco Pierre Mathieu David Sénéchal

Conformal Field Theory



Contents

Preface	vii
Part A INTRODUCTION	1
1 Introduction	3
2 Quantum Field Theory	15
2.1 Quantum Fields	15
2.1.1 The Free Boson	15
2.1.2 The Free Fermion	21
2.2 Path Integrals	25
2.2.1 System with One Degree of Freedom	25
2.2.2 Path Integration for Quantum Fields	28
2.3 Correlation Functions	30
2.3.1 System with One Degree of Freedom	30
2.3.2 The Euclidian Formalism	31
2.3.3 The Generating Functional	33
2.3.4 Example: The Free Boson	33
2.3.5 Wick's Theorem	35
2.4 Symmetries and Conservation Laws	36
2.4.1 Continuous Symmetry Transformations	36
2.4.2 Infinitesimal Transformations and Noether's Theorem	39
2.4.3 Transformation of the Correlation Functions	42
2.4.4 Ward Identities	43
2.5 The Energy-Momentum Tensor	45
2.5.1 The Belinfante Tensor	46
2.5.2 Alternate Definition of the Energy-Momentum Tensor	49

*	Contents
2.A Gaussian Integrals	
2.B Grassmann Variables	51
2.C Tetrads	52
Exercises	56
Enciciaca	58
3 Statistical Mechanics	60
3.1 The Boltzmann Distribution	60
3.1.1 Classical Statistical Models	62
3.1.2 Quantum Statistics	66
3.2 Critical Phenomena	67
3.2.1 Generalities	67
3.2.2 Scaling	70
3.2.3 Broken Symmetry	73
3.3 The Renormalization Group: Lattice Models	74
3.3.1 Generalities	, 75
3.3.2 The Ising Model on a Triangular Lattice	77
3.4 The Renormalization Group: Continuum Models	82
3.4.1 Introduction	82
3.4.2 Dimensional Analysis	84
3.4.3 Beyond Dimensional Analysis: The φ^4 Theor	
3.5 The Transfer Matrix	87
Exercises	90
Part B FUNDAMENTALS	93
4 Global Conformal Invariance	95
4.1 The Conformal Group	95
4.2 Conformal Invariance in Classical Field Theory	99
4.2.1 Representations of the Conformal Group in d	
4.2.2 The Energy-Momentum Tensor	101
4.3 Conformal Invariance in Quantum Field Theory	104
4.3.1 Correlation Functions	104
4.3.2 Ward Identities	106
4.3.3 Tracelessness of $T_{\mu\nu}$ in Two Dimensions	107
Exercises	109
5 Conformal Invariance in Two Dimensions	111
5.1 The Conformal Group in Two Dimensions	112
5.1.1 Conformal Mappings	112
5.1.2 Global Conformal Transformations	113
5.1.3 Conformal Generators	114
5.1.4 Primary Fields	115
5.1.5 Correlation Functions	116
	110

Contents		
5.2	Ward Identities	118
-	5.2.1 Holomorphic Form of the Ward Identities	118
	5.2.2 The Conformal Ward Identity	121
	5.2.3 Alternate Derivation of the Ward Identities	123
5.3	Free Fields and the Operator Product Expansion	127
	5.3.1 The Free Boson	128
	5.3.2 The Free Fermion	129
	5.3.3 The Ghost System	132
5.4	The Central Charge	135
	5.4.1 Transformation of the Energy-Momentum Tensor	136
	5.4.2 Physical Meaning of c	138
5.A	The Trace Anomaly	140
5.B	The Heat Kernel	145
	Exercises	146
6 The	Operator Formalism	150
6.1	The Operator Formalism of Conformal Field Theory	151
	6.1.1 Radial Quantization	151
	6.1.2 Radial Ordering and Operator Product Expansion	153
6.2	The Virasoro Algebra	155
	6.2.1 Conformal Generators	155
	6.2.2 The Hilbert Space	157
6.3	The Free Boson	159
	6.3.1 Canonical Quantization on the Cylinder	159
	6.3.2 Vertex Operators	161
	6.3.3 The Fock Space	163
	6.3.4 Twisted Boundary Conditions	164
	6.3.5 Compactified Boson	167
6.4	The Free Fermion	168
	6.4.1 Canonical Quantization on a Cylinder	168
	6.4.2 Mapping onto the Plane	169
	6.4.3 Vacuum Energies	171
6.5	Normal Ordering	173
6.6	Conformal Families and Operator Algebra	177
	6.6.1 Descendant Fields	177
	6.6.2 Conformal Families	178
	6.6.3 The Operator Algebra	180
	6.6.4 Conformal Blocks	183
	6.6.5 Crossing Symmetry and the Conformal Bootstrap	185
6.A	Vertex and Coherent States	187
6.E	The Generalized Wick Theorem	188
6.0	A Rearrangement Lemma	190
6.E	Summary of Important Formulas	192
	Exercises	193

.....

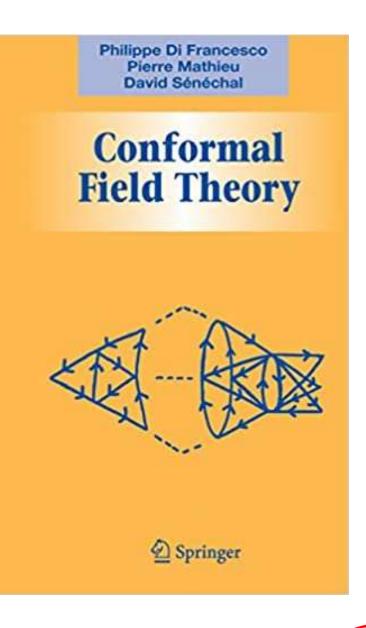
 -	_	

COLICINS

7	Mir	nimal Models I	200
	7.1	Verma Modules	200
		7.1.1 Highest-Weight Representations	201
		7.1.2 Virasoro Characters	203
		7.1.3 Singular vectors and Reducible Verma Modules	204
	7.2	The Kac Determinant	205
		7.2.1 Unitarity and the Kac Determinant	205
		7.2.2 Unitarity of $c \ge 1$ Representations	209
		7.2.3 Unitary $c < 1$ Representations	210
	7.3	Overview of Minimal Models	211
		7.3.1 A Simple Example	211
		7.3.2 Truncation of the Operator Algebra	214
		7.3.3 Minimal Models	215
		7.3.4 Unitary Minimal Models	218
	7.4	Examples	219
		7.4.1 The Yang-Lee Singularity	219
		7.4.2 The Ising Model	221
		7.4.3 The Tricritical Ising Model	222
		7.4.4 The Three-State Potts Model	225
		7.4.5 RSOS Models	227
		7.4.6 The O(n) Model	229
		7.4.7 Effective Landau-Ginzburg Description of Unitary	
		Minimal Models	231
		Exercises	235
8	Min	imal Models II	239
	8.1	Irreducible Modules and Minimal Characters	240
		8.1.1 The Structure of Reducible Verma Modules for Minimal	
		Models	240
		8.1.2 Characters	242
	8.2	Explicit Form of Singular Vectors	243
	8.3	Differential Equations for the Correlation Functions	247
		8.3.1 From Singular Vectors to Differential Equations	247
		8.3.2 Differential Equations for Two-Point Functions in	
		Minimal Models	250
		8.3.3 Differential Equations for Four-Point Functions in	
		Minimal Models	252
	8.4	Fusion Rules	255
		8.4.1 From Differential Equations to Fusion Rules	255
		8.4.2 Fusion Algebra	257
		8.4.3 Fusion Rules for the Minimal Models	259
	8.A	General Singular Vectors from the Covariance of the OPE	265
		8.A.1 Fusion of Irreducible Modules and OPE Coefficients	266
		8.A.2 The Fusion Map F: Transferring the Action of Operators	271

8.A.3 The Singular Vectors $ h_{r,s} + rs\rangle$: General Strategy	273
8.A.4 The Leading Action of $\Delta_{r,1}$	275
8.A.5 Fusion at Work	278
8.A.6 The Singular Vectors $ h_{r,s} + rs\rangle$: Summary	281
Exercises	283
9 The Coulomb-Gas Formalism	294
9.1 Vertex Operators	294
9.1.1 Correlators of Vertex Operators	295
9.1.2 The Neutrality Condition	297
9.1.3 The Background Charge	298
9.1.4 The Anomalous OPEs	300
9.2 Screening Operators	301
9.2.1 Physical and Vertex Operators	301
9.2.2 Minimal Models	303
9.2.3 Four-Point Functions: Sample Correlators	306
9.3 Minimal Models: General Structure of Correlation Functions	314
9.3.1 Conformal Blocks for the Four-Point Functions	314
9.3.2 Conformal Blocks for the N-Point Function on the Plane	315
9.3.3 Monodromy and Exchange Relations for Conformal	
Blocks	316
9.3.4 Conformal Blocks for Correlators on a Surface of Arbitrary Games	318
Arbitrary Genus 9.A Calculation of the Energy-Momentum Tensor	319
9.B Screened Vertex Operators and BRST Cohomology: A Proof of	319
the Coulomb-Gas Representation of Minimal Models	320
9.B.1 Charged Bosonic Fock Spaces and Their Virasoro	520
Structure	321
9.B.2 Screened Vertex Operators	323
9.B.3 The BRST Charge	324
9.B.4 BRST Invariance and Cohomology	325
9.B.5 The Coulomb-Gas Representation	327
Exercises	328
10 Modular Invariance	335
10.1 Conformal Field Theory on the Torus	336
10.1.1 The Partition Function	337
10.1.2 Modular Invariance	338
10.1.3 Generators and the Fundamental Domain	339
10.2 The Free Boson on the Torus	340
10.3 Free Fermions on the Torus	344
10.4 Models with $c = 1$	349
10.4.1 Compactified Boson	349
10.4.2 Multi-Component Chiral Boson	352
1 : 2 : 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2	

хш



A conformal field theory is a list of operators (states) and their correlation functions (many determined by scaling dimensions).

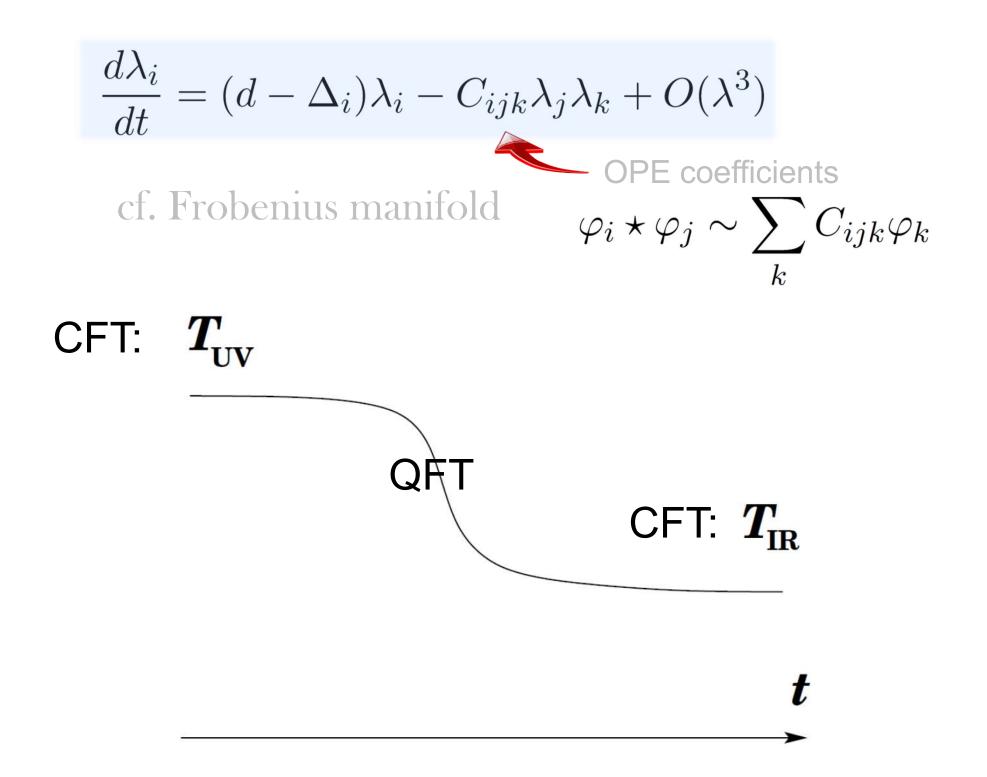
$$\langle \phi_1(x_1) \phi_2(x_2) \rangle = \frac{C_{12}}{r_{12}^{\Delta_1 + \Delta_2}}$$

- Spectrum
- Correlation functions
- Scaling dimensions

"The shell game that we play ... is technically called 'renormalization'. But no matter how clever the word, it is still what I would call a dippy process! Having to resort to such hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-consistent. It's surprising that the theory still hasn't been proved self-consistent one way or the other by now; I suspect that renormalization is not mathematically legitimate."

Richard Feynman (1985)

ALRIGHT RUTH, I ABOUT GOT THIS ONE RENORMALIZED.



Exact Five-Loop Renormalization Group Functions of ϕ^4 -Theory with O(N)-Symmetric and Cubic Interactions.

H. Kleinert and V. Schulte-Frohlinde

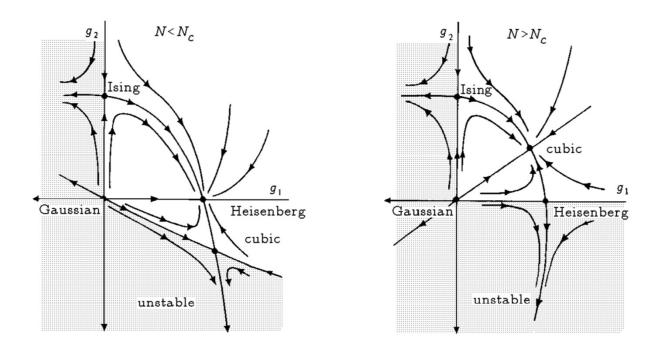
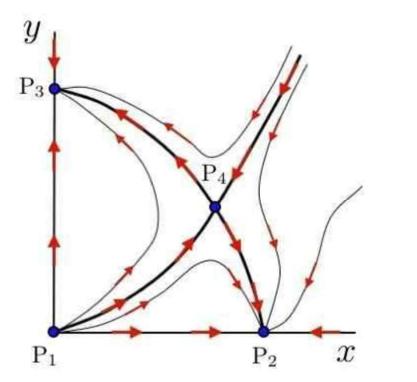
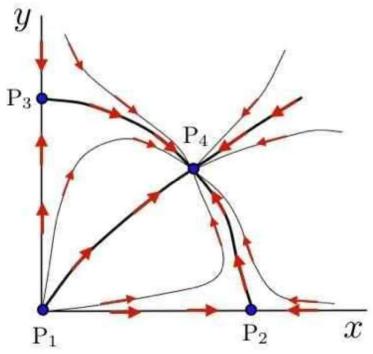


Figure 1: The Stability of the fixed points in the ϕ^4 -theory with O(N)-symmetric and cubic coupling for $N < N_c$ and $N > N_c$. Our results are compatible with $N_c = 3$.





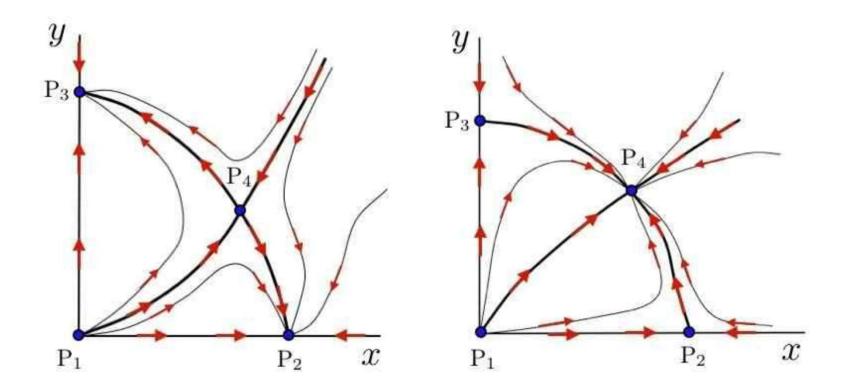
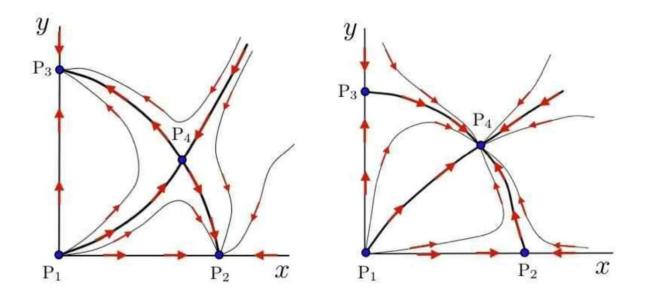
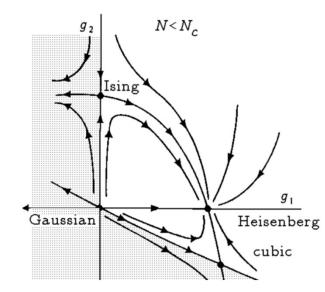


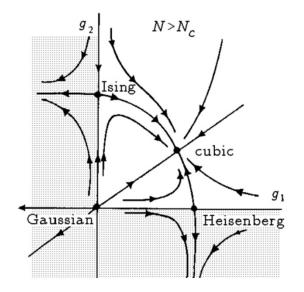
Figure 3.12: Two possible phase flows for the rabbits vs. sheep model of eqs. 3.61, Left panel: $k > r > k'^{-1}$. Right panel: $k < r < k'^{-1}$.

$$\dot{x} = x \left(r - x - ky \right)$$
$$\dot{y} = y \left(1 - y - k'x \right)$$



RG Flow = Dynamical System



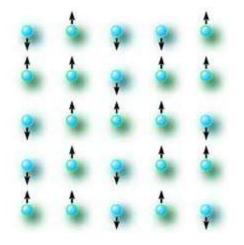


New techniques:

Conley index Bifurcations

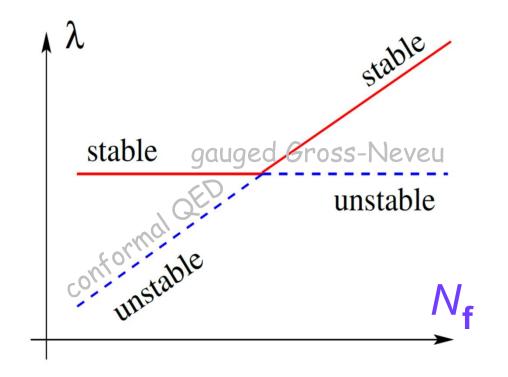
New predictions:

3d O(N) model



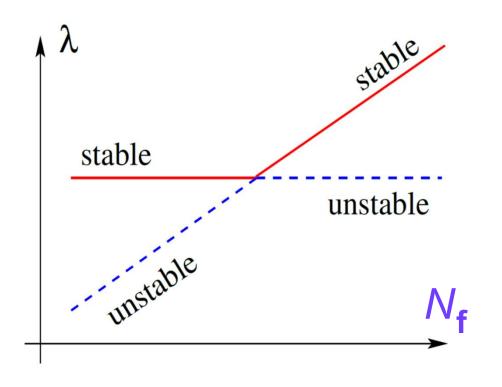
4d QCD

Transcritical Bifurcation

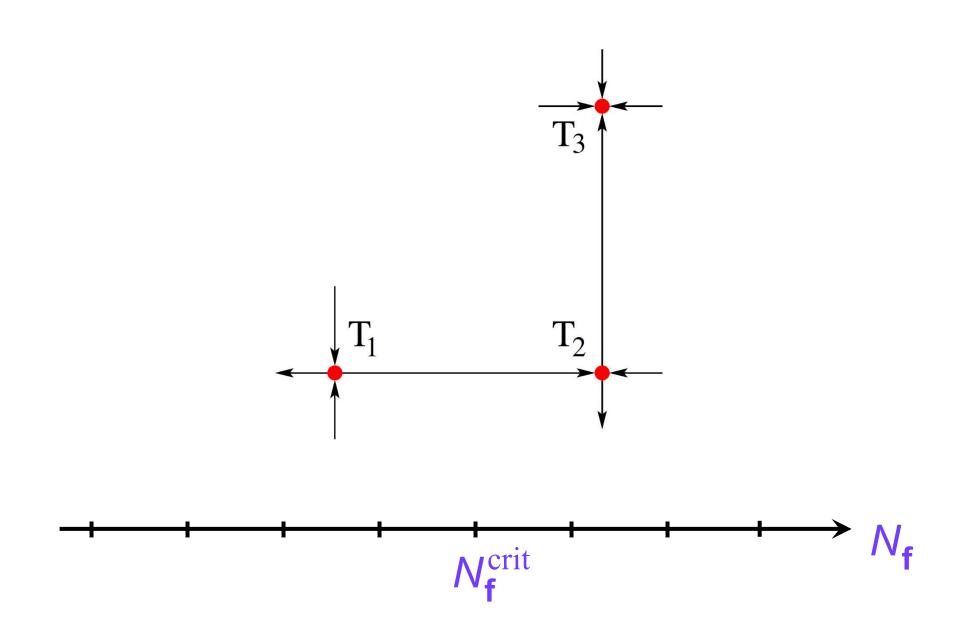


$$\begin{cases} \dot{\lambda}_1 &= (N_f - N_f^{\text{crit}})\lambda_1 - \lambda_1^2 \\ \dot{\lambda}_2 &= -\lambda_2 \end{cases}$$

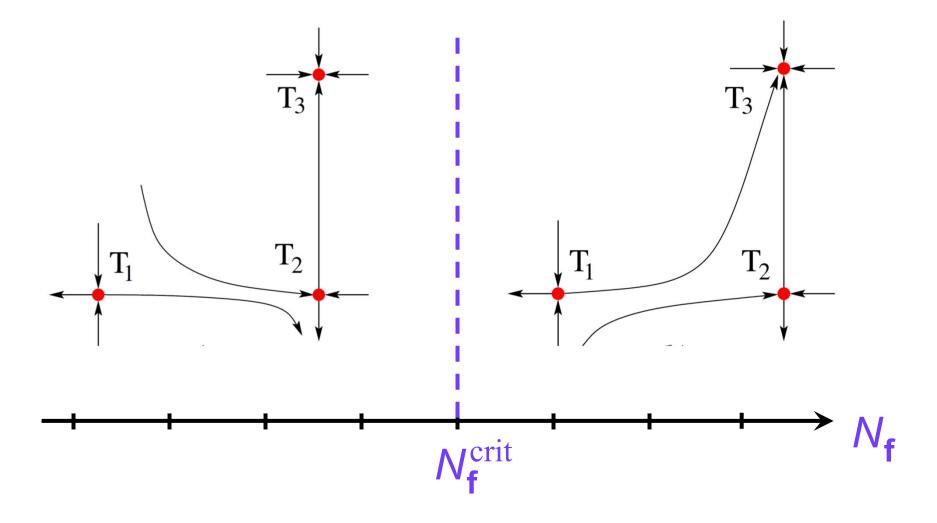
Transcritical Bifurcation

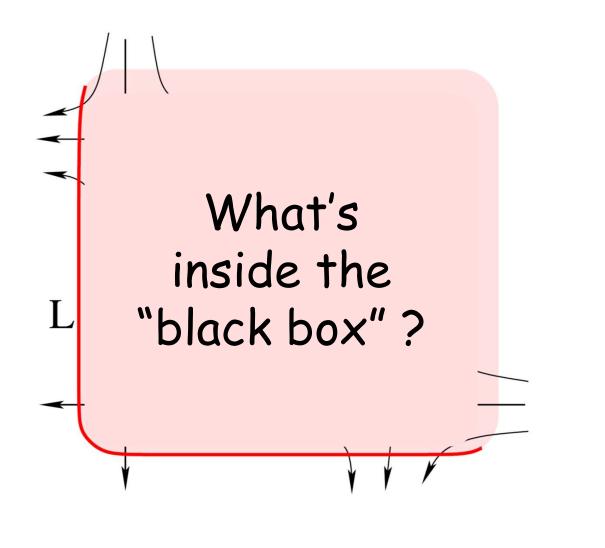


- Codimension-2
- $\Delta d \sim \sqrt{N_f N_f^{\rm crit} }$
- Structurally unstable



Heteroclinic Bifurcation

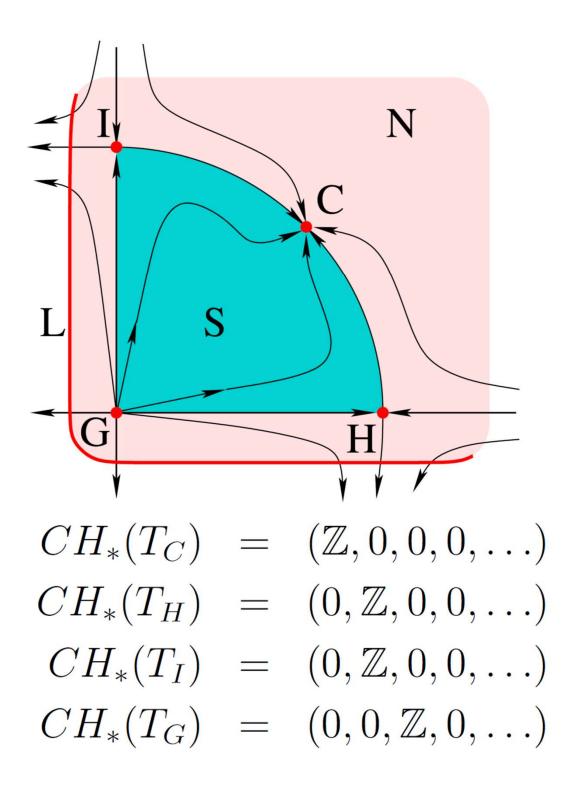




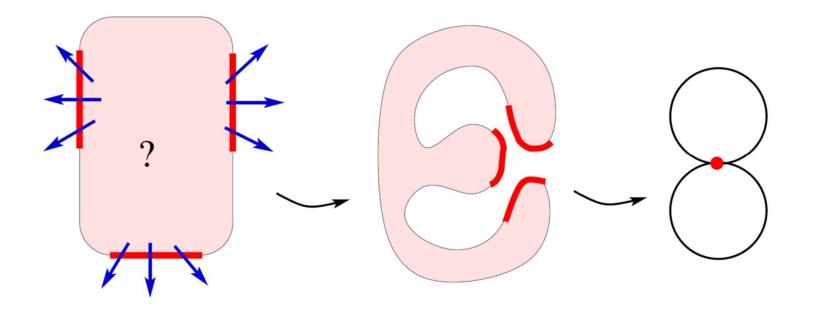
Charles C. Conley 1933-1984

 $\frac{\ker \Delta}{\operatorname{im} \Delta} \cong CH_*(S)$

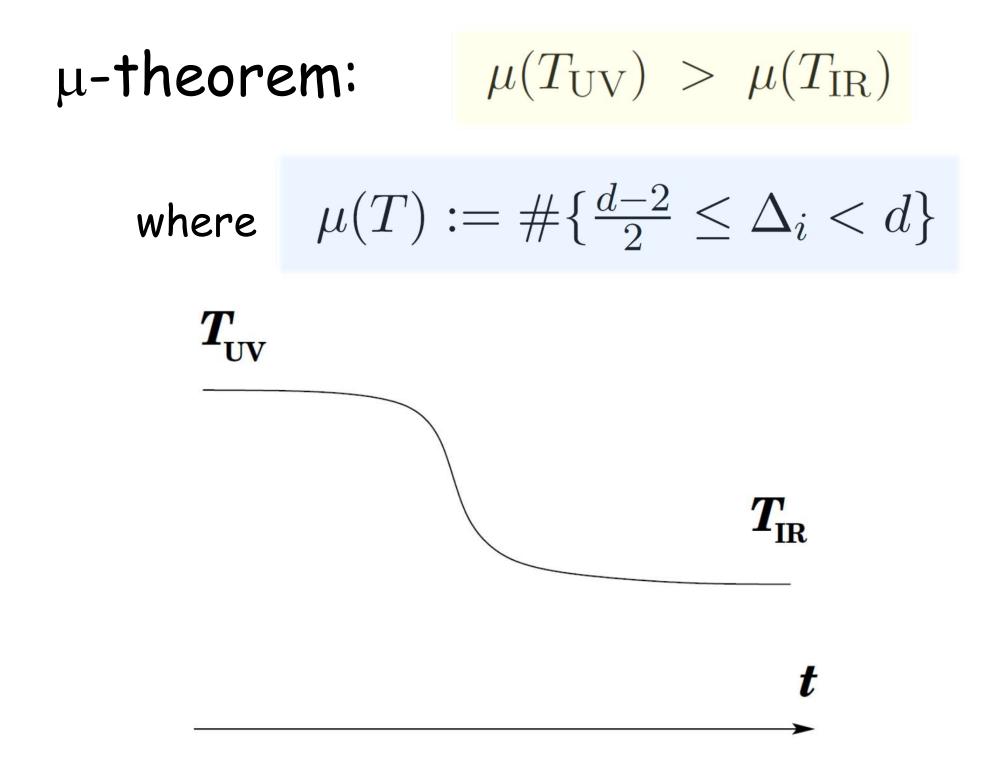
 $\Delta \circ \Delta = 0$

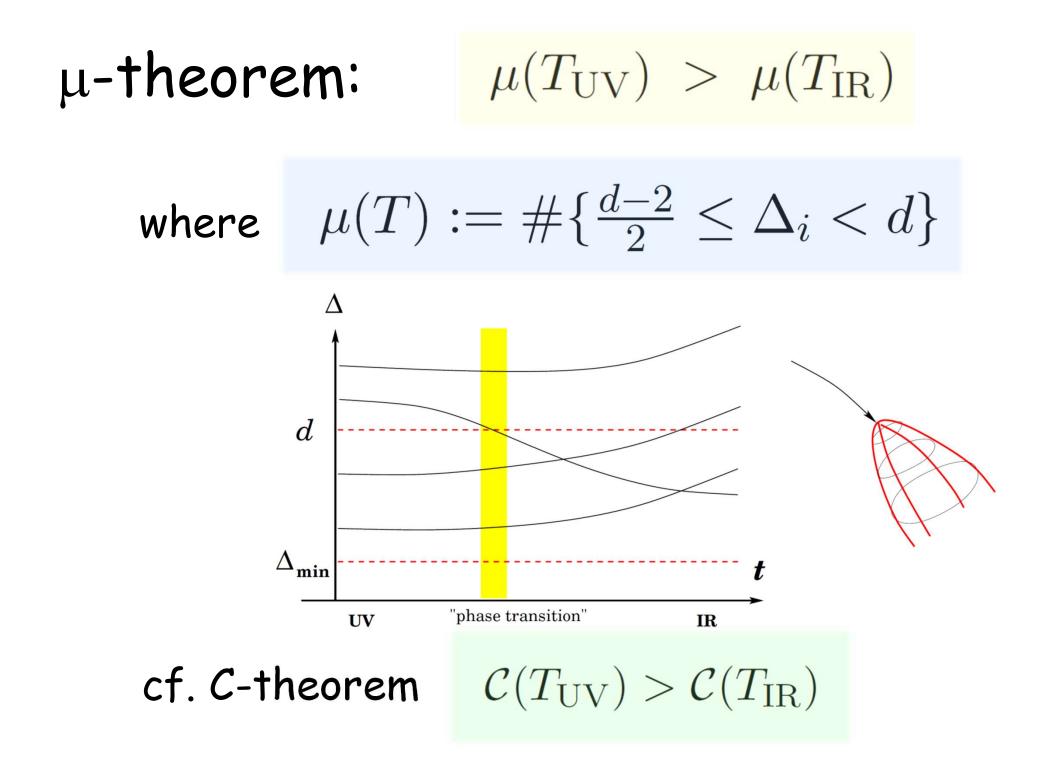


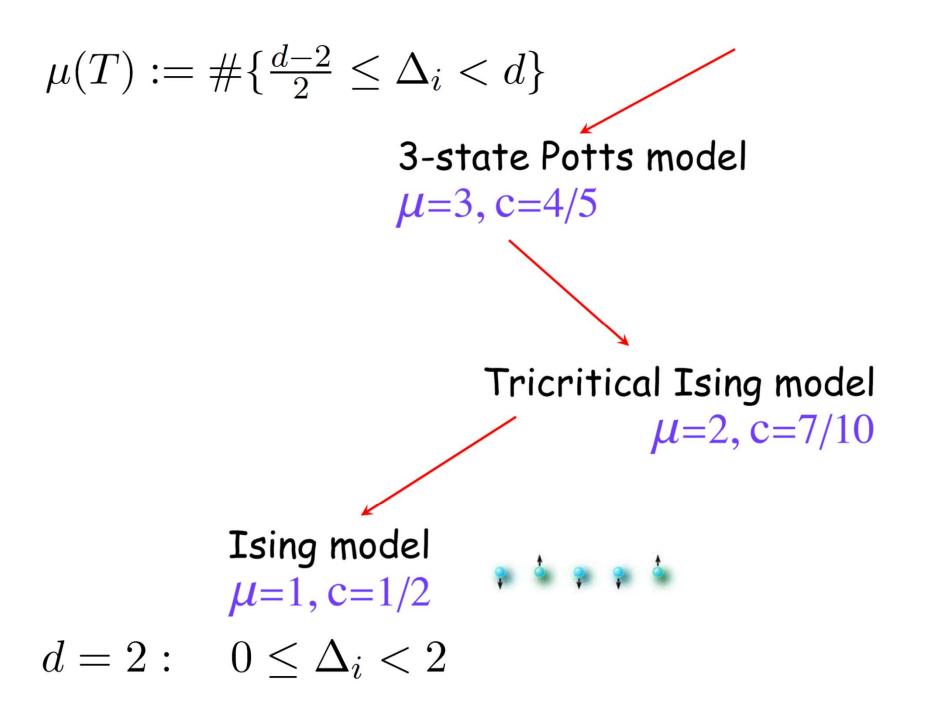
Charles C. Conley 1933-1984



exit set L	N/L	$CH_*(S)$
Ø	$D^2 \sqcup \{ \mathrm{pt} \}$	$\mathbb{Z}[0]$
S^1	S^2	$\mathbb{Z}[2]$
I	D^2	0
$I \sqcup I$	S^1	$\mathbb{Z}[1]$
$I \sqcup I \sqcup I$	$S^1 \vee S^1$	$\mathbb{Z}[1] \oplus \mathbb{Z}[1]$







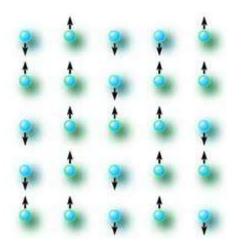
Spectrum of 2d \mathcal{N} = 2 superconformal field theory: $\{\Delta_i\} \qquad 0 \leq \Delta_i < 2$ $\Delta_i = R_i$ "scaling dimensions" a.k.a. "conformal dimensions"

Central charge of $\mathcal{N} = 2$ Landau-Ginzburg model:

$$c = 3\sum_{i} (1 - R_i)$$
$$W(\lambda^{R_i} \Phi_i) = \lambda^2 W(\Phi_i)$$

 $A_N \mathcal{N} = 2$ minimal model

$$c = 3 - \frac{6}{N+1}$$
$$\Delta_i = \frac{2i}{N+1} \quad i = 1, \dots, N$$

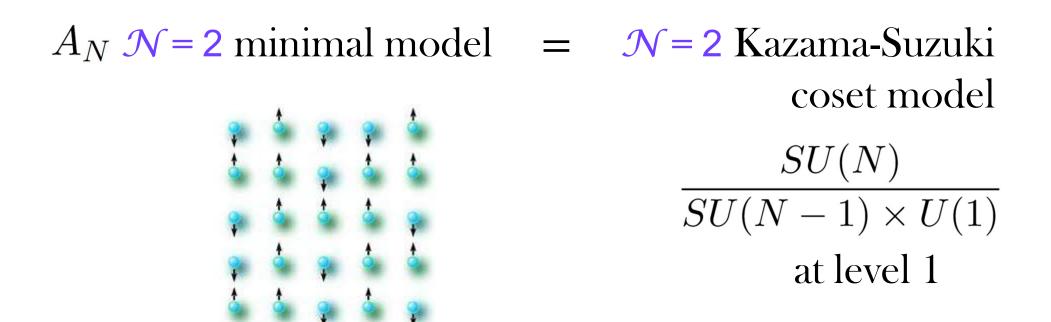


can be described as a LG model with the superpotential

$$W = x^{N+1}$$

cf.
$$\operatorname{sp}(x^{N+1}) = \{\frac{1}{N+1}, \frac{2}{N+1}, \dots, \frac{N}{N+1}\}$$

chiral ring: $\mathbb{C}[x]/dW = H^*(\mathbb{C}\mathbf{P}^{N-1})$ is the classical cohomology ring of $\mathbb{C}\mathbf{P}^{N-1} = \frac{SU(N)}{U(N-1)}$



$$\mathcal{N} = 2$$
 Kazama-Suzuki model
 $\frac{SU(N)}{SU(N-k) \times SU(k) \times U(1)}$ at level 1

$$c = \frac{3k(N-k)}{N+1}$$

$\mathcal{N} = 2$ Kazama-Suzuki model $\frac{SU(N)}{SU(N-k) \times SU(k) \times U(1)}$

$$W = x_1^{N+1} + x_2^{N+1} + \ldots + x_k^{N+1}$$

expressed as a polynomial in the elementary symmetric functions

$$z_i = \sigma_i(x_1, \ldots, x_k)$$

e.g.

chiral ring (Jacobi ring / Milnor algebra):

$$\frac{\mathbb{C}[z_i]}{\{\partial_i W\}} = H^*(Gr(k, N))$$

is the classical cohomology ring of the Grassmannian

cf. Thom-Sebastiani sum:

$$sp(x^4 + y^4) = \left\{\frac{2}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{4}{4}, \frac{4}{4}, \frac{5}{4}, \frac{5}{4}, \frac{5}{4}, \frac{6}{4}\right\}$$

and similarly for other Brieskorn-Pham singularities.

chiral ring (Jacobi ring / Milnor algebra):

$$\frac{\mathbb{C}[z_i]}{\{\partial_i W\}} = H^*(Gr(k, N))$$

is the classical cohomology ring of the Grassmannian

cf. Thom-Sebastiani sum:

Note:

1	2	3	2	1
$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$

$$sp(x^4 + y^4) = \left\{\frac{2}{4}, \frac{3}{4}, \frac{3}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{5}{4}, \frac{5}{4}, \frac{6}{4}\right\}$$

 $sp(W) \subset (0,k)$ while $0 \le \Delta_i < 2$

Definition: An invariant *I* of a singularity is *semi-continuous* if for each adjacency $f \rightsquigarrow g_1 + g_2 + \ldots + g_N$ one has $I(f) \ge \sum_{i=1}^N I(g_i)$

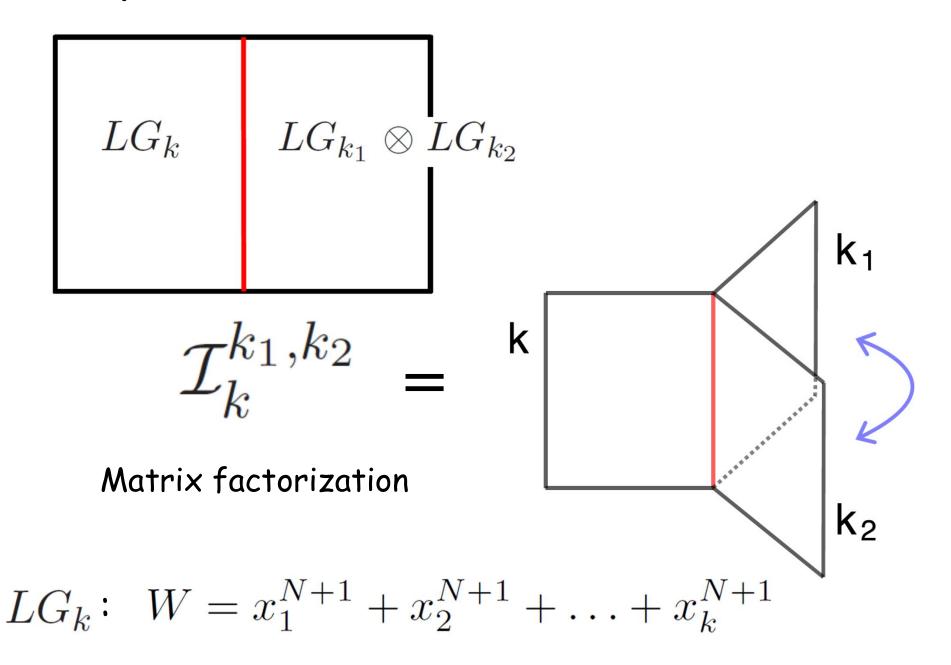
Definition: A subset $S \subset \mathbb{R}$ is called a semi-continuity set if $\#S \cap sp(f)$ is semi-continuous.

Theorem:

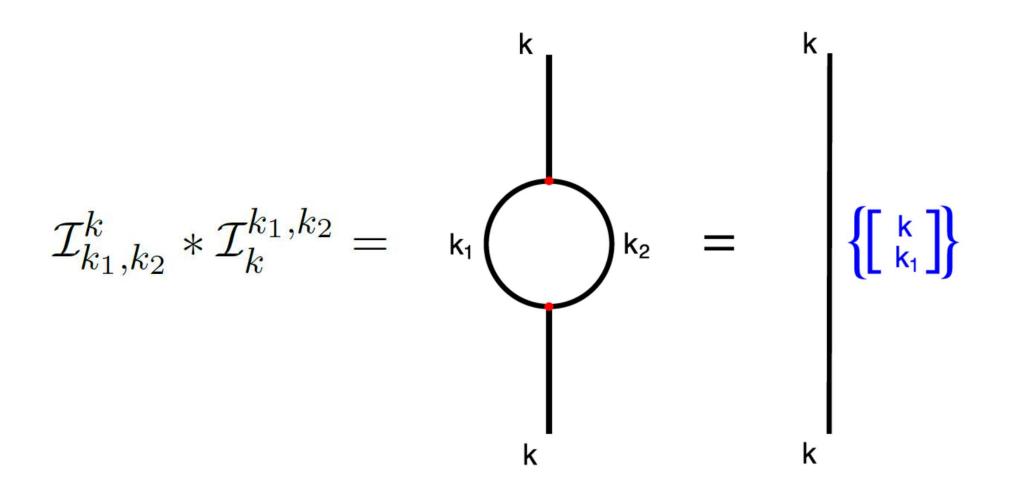
(A. Varchenko, 1983): if f is quasi-homogeneous then each open interval (a, a + 1) is a semi-continuity set.

(J. Steenbrink, 1985): for general f each interval (a, a + 1] is semi-continuity set.

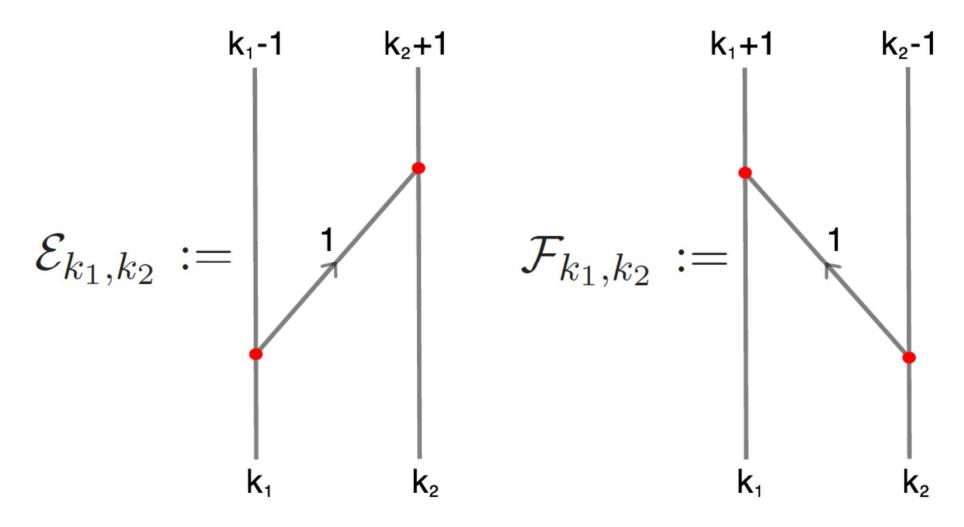
Spectra of walls in KS models



Quantum groups and KS models



arXiv: 1507.06318



$$\mathcal{E}_{k_1,k_2} := \left(\operatorname{Id}_{k_1-1} \otimes \mathcal{I}_{1,k_2}^{k_2+1} \right) * \left(\mathcal{I}_{k_1}^{k_1-1,1} \otimes \operatorname{Id}_{k_2} \right)$$
$$\mathcal{F}_{k_1,k_2} := \left(\mathcal{I}_{k_1,1}^{k_1+1} \otimes \operatorname{Id}_{k_2-1} \right) * \left(\operatorname{Id}_{k_1} \otimes \mathcal{I}_{k_2}^{1,k_2-1} \right)$$

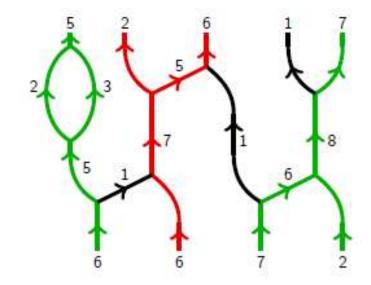
arXiv: 1507.06318

Categorification of Quantum Groups

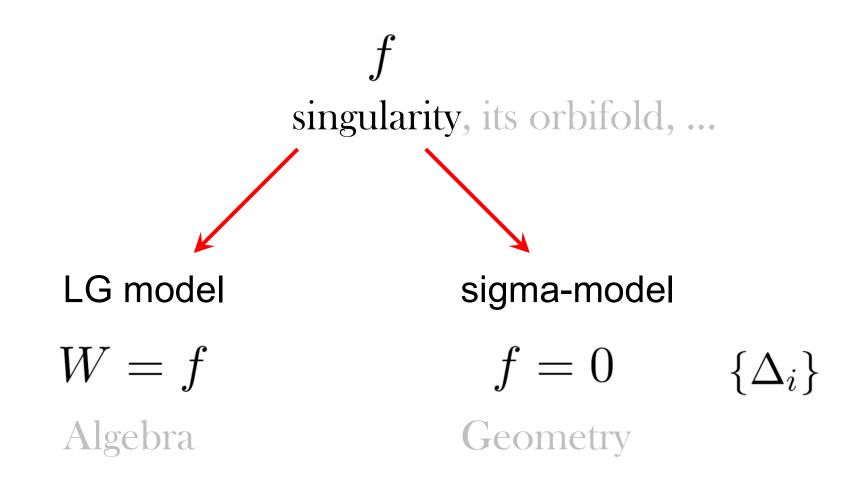
 $\mathcal{E}_{k_1+1,k_2-1} * \mathcal{F}_{k_1,k_2} \cong \mathcal{F}_{k_1-1,k_2+1} * \mathcal{E}_{k_1,k_2} \oplus \mathrm{Id}_{k_1,k_2} \{ [k_2 - k_1] \}$

and, similarly, for $k_1 \geq k_2$:

 $\mathcal{F}_{k_1-1,k_2+1} * \mathcal{E}_{k_1,k_2} \cong \mathcal{E}_{k_1+1,k_2-1} * \mathcal{F}_{k_1,k_2} \oplus \mathrm{Id}_{k_1,k_2} \{ [k_1 - k_2] \}$

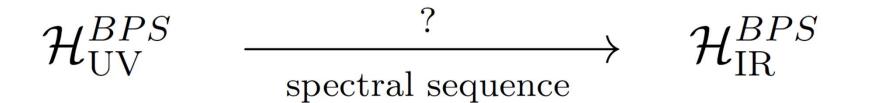


arXiv: 1507.06318

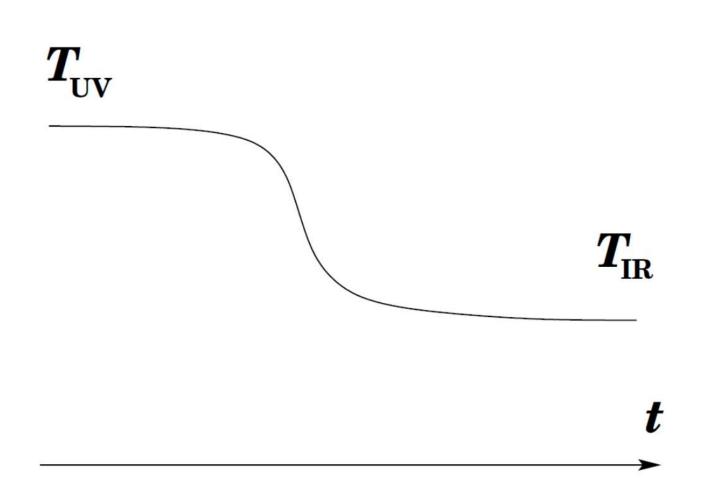


Also a product of $\mathcal{N} = 2$ minimal models and Kazama-Suzuki models! $SL(2) \bigcirc LC(W)$

 $\frac{SL(2)}{U(1)}\bigotimes \mathrm{LG}(W=f)$



Categorification of semicontinuity?



Thanks for listening.

Questions?

Coset theory	С	Degrees of generators
SU(n+m)	3nm	1.2
$\overline{\mathrm{SU}(n)\otimes\mathrm{SU}(m)\otimes\mathrm{U}(1)}$	$\overline{m+n+1}$	$1,2\ldots,\min(n,m)$
$\frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n)\otimes\mathrm{U}(1)},(n \text{ even})$	$\frac{3n}{n+1}$	1, n/2
$\frac{\mathrm{SO}(2n)}{\mathrm{SU}(n)\otimes\mathrm{U}(1)}$	$\frac{3n(n-1)}{2(2n-2+1)}$	4 <i>i</i> -2, $\begin{cases} i = 1,, n/2 \ (n \text{ even}) \\ i = 1,, (n-1)/2 \ (n \text{ odd}) \end{cases}$
$\frac{E_6}{\mathrm{SO}(10) \otimes U(1)}$	$\frac{48}{13}$	1,4 $(1-1,\ldots,(n-1))/2$ (n odd)
$\frac{E_7}{E_6 \otimes U(1)}$	$\frac{81}{19}$	1, 5, 9

e.g. $SO(n+2)/SO(n) \times SO(2)$:

W.Lerche, C.Vafa, N.P.Warner

$$W = x_1^{n+1} + x_1 x_2^2$$

 D_{n+2} minimal model