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1 Motivations from 542 and HMS

Def A smooth projective variety X e is called

Calabi Yau if its canonical bundle Kx is trivial

i e it has a nowhere vanishing holomorphic volume form

Examples Elliptic curve abelianvariety K3 surface hypersurface of

degree del in Epd

MirrorSymmetry conjectural duality between Calabi Yau varieties

Any CY variety X F mirror variety X

such that a list of deep geometric relations hold between X andX
involving Hodge structures GromovWitten invariants Fukaya categories
derived category of coherent sheaves 542 torus fibrations etc

Example Hodgenumbers h x hdP9 Y

In 3 dim case h X K X h X

h X K2 X L X
Candelas et al



Two main conjectures in mirror symmetry
SYZ conjeiture Strominger Yau Zaslow conjecture

HMS conjecture Homological mirror symmetry by Kontsevich

Roughideaof SYZconjecture

1 In certain asymptotic sense the CYmanifold X
shouldadmit a torus fibration calledSYZ fibration

Base

2 The mirror Ymanifold I should beconstructed

by first takingthedual torusfibration and then
modified using specific counts of holomorphicdisks

called instanton corrections

Rough idea of HMS conjecture

X m Fuk X Fukaya category

objects Lagrangian submanifolds La X

morphisms holomorphicdisks with boundaries on Lagrangians

us Coh X category of coherent sheaves on

Then DFuk X DbGh X after passing to the derived categories



Combining 542 t HMS
heuristic construction of the mirror variety

The best illustration of this idea is for the case of log CalabiYauvarieties
because in this case the mirror X will be an affine varietry X SpecA

We call A themirror algebra and it suffices to describe explicitly the

underlying vector space of A and the multiplication rule i.e the struiture

constants

Remark The affine mirror variety I SpecA has natural compactifications

given by Prof of some graded mirror algebra

2 Heuristics behind the mirror structure constants

Setup Y D Y smooth projective variety k any field of char 0

D normal
crossing divisor

U YID
We have log pluricanonical forms H Y WyDtm C H U Wgm

independent of the compactification

YDef U is log CalabiYan if for all m this subspace is one dimensional

and generated by a volume form R on U



Example It D e I Kyl then U is log Calabi Yau

In this case Y D is called a minimal model of U

Rem All log Calabi Yau varieties arise in thisway if we allow dk singularities

Def A logCalabi Yau U has maximal boundary if it has a minimal model

Y D with a D dimensional log canonical center i.e a d stratum in the

normal
crossing case

Example Y D tori variety U A

Flee If
Y D Y D D strict transform of D

YID O FID

Goal Construct the mirror variety Y Spee A of anyaffinelogCalabi Yau

Wewill construct the mirror algebra A by generators as module andstructure

constants

Rem Without affineness the mirror will only be formal

Rem In fact we will construct a family of mirror varieties
spec

t
SpeeR



Generators of A as R module are indexed by the set
Sk U R integer points in the essential skeleton of U

0 W mu me IN o o is an essential divisorial valuation on k u
I 7volume formhas fieldofrational

1st orderpole functions

Let R Z NELY Z Z E themonoid ring of NE Y Z over Z
PENELYZ

A RISK
pesky z

R Op the free R modulewith basis Sk U x

Multiplication rule

Given Pi Pn ESk U R we write the product in the mirror algebra A as

Op Op E E X Pi Pn Q 8 280g
QeSklV 7 VENEY2 Astructure Constants

542 HMS us the structure constants are supposed to be given by the

counts of following holomorphic disks in U

Write Pj Mjg forallPj to
Assumeeach Vj is givenby a component DjCD alwayspossibleaftera blowup



Henystiq
Pn Q 2 disks D in Y

St i D intersectsDjwithordermy

4
M t

via the 542 fibration
200 a

J j Hit 20 has homology class Q E H fiber

Iu class of 0 2

In order to make conditions ii iii above precise we need to replace the 542

fibration by the non archimedean 542 fibration

3 Non archimedean 542 fibration

Weequip our base field k with the trivial absolute value 1.1 k to I

let for all x e ki o
o for 2 0

Then k becomes a non archimedeanfield
Berkovich analytification U Van k analytic space

analogous to complex analytic geometry

uan set 3 y 4
E U is a scheme theoretic point

V is an absolutevalue on theresiduefield KC
extending thegiven one on k



Volume form R on U m 11211 UK Ryo upper semicontinuous function
Temkin's Kahlerseminorm

Def The skeleton of U Sk U the maximal locus of Hall C Van

Rem Sk U 2 C Sk U valuations on the genericpointonly

Example Y D A Sk U dual intersection cone complex of D

H
Y

Berkovich Nicaise Xu Yu strong deformation retraction e Van Sk U

E
idtortiration outside

codim2 Nonarchimedean 542 fibration

locallygiven by Gmt
an

IR taking coordinatewise valuations

lyticdisk van

V

ska

O dTypical
disk



Rj

Q 2 disks D in Y

St i D intersectsDjwithordermy
ii 20 maps to a point near QE 5k U Z

till

4 2000

µ
Igj Hit 20 has homology class Q E H fiber

ht
Now we reformulate conditions di iii via the nonarchimedean 542 fibration

tropical disk I C Shu

K'Q

Having formulated the precise conditions we are ready to count analytic disks

satisfying these conditions

Trouble The moduli space of such disks is a dimensional

We must impose further conditions to cut the dimension down to 0

In particular we must impose a regularity condition on the boundary 20 to

discard most of the nonarchimedean analytic disks



Rough idea The boundary 20 lies in the place of Van with affinoid torus

fibration i.e locally isomorphic to Gmt R

We want themap 20 Gm to be as simple as possible

After analyzing low dimensional examples we proposes the following boundary
condition 28 Emm s t the tropical curve associated to g isoppositeorientation

p a straight lineIt tan
toric compactification

Geometrically it means that we are gluing the toric variety Tan to Yan

along a small domain G of trivial affinoid torus fibration

2 YangTan

Nowwe count closed rational curves D U D in 2 sit

D Ya satisfies i in as before
0 0

O Tan has straight tropical curve



5 Properness of themodulispace

Worry The new target space 2 YangTan is not projective not even

proper not even separated

How is it ever possible to count curves in such a space

Idea As long as we can keep the circle A Ono away from the boundary of

the domain G the rest of the curve C will not feel the non separated lows
I we glued 2 yayTanalong G of 2

More precisely we fix a marked point q onthecirile A as well as markedpoints

Pi where C touches the boundary of Yanand Tan

Let M U B denote the moduli space of suit curves in 2 YayTan
Consider I M U p

dom eva Vm x G
n
Mann

Main theorem I is finite étale over an open neighborhood of Sk VmxG

Its degree us the desired count of non archimedean analytic disks

structure constant X Pi Pn Q y

commutative associative mirror algebra A

Further result SpecA Spec R is a flat family of Gorenstein semi log
canonical log Calabi Yau varieties with normal and log canonical generic fibers



6 Ingredients in the proof of the main theorem

Finite étale
smooth nonarchimedean deformation theory based onPorta Y

relative dimension O gluing of volume form

proper topologically proper use formal model

boundaryless use formal model

In fact for boundaryless we need to introduce an auxiliary modulispace

M U P asking not only the circle A D no to map to G but also an

open thickening of the circle to map to G

Finally we use the theory of skeletal curves to identify MCU P with

M Vip over Sk Vm x G

Geometric idea

M

need topreventbad branches growing out of the
thickening

annulus whenwepassbywalls in theskeleton Sk U

7 Comparison with punctured log Gromov Witten invariants by ACES


