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Mapping Class Groups
Sy orientable surface, genus g

Mod(S,) = mo Diff*(S,)
= Diff*(S,)/ Diffo(S,)

® Examples

Mod(S{?”): -0 Mod\(\kT)‘ _SL(2,7)

® Generated by Dehn twists

* Marked points: Mod(S,; k) = mo Diff "(Sy; k)
where Diff *(Sy; k) = diffeo’s fixing a set {z1,...



Nielsen Realization Problem
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[Kerckhoff '83] Every finite subgp. of Mod(S,) can be realized as a gp.
of isometries for some hyperbolic structure on Sj,.

* Mod(S,) acts on the Teichmiiller space J, = R%76,
T4/ Mod(Sy) = moduli space of Riemann surfaces

[K. '83] Every fin. subgp. of Mod(S,) C J, has a fixed point.

Case of marked points: Jj(Sy) is defined in a similar way

[Wolpert '87, Masur-Wolf '02] Every finite subgroup of Mod™(Sy; k)
acting on J;(S,) has a fixed point.



Non-orientable surfaces: N, = RP?# ... #RP?
———
g

Mod(Ng; k) := Diff(Ng; k)/ Diffo(Ng; k)
Examples:  Mod(N3) =Z/2 x Z/2, Mod(N3) = GL(2,Z).

Theorem (Colin, X.) Every finite subgroup G ¢ Mod(Ny; k) acting on
Tk (Ny) has a fixed point.
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Theorem (Colin, X.) If g > 35, the projection p: Diff(N,) - Mod(N,)
does not have a section.



Klein Surfaces
For f: U cC-C, azf:%(amf_iayf)
O:f = 2(0uf +i0y, f)
® fis analytic if 95 =0
® fis antianalytic if 9, =0

® fis dianalytic if f |,/ to any connected comp. is either one.

Definition: A Klein surface (3,X) is a connected
surface X together with a dianalytic structure X,

(i.e. an equivalence class of dianalytical atlases).

M (X) = set of dianalytic structures of 3 that
agree with the smooth structure.



Definition:

® A morphism (or dianalytic map) f:(%,%X) > (¥',2) isa map
s.t. Yz eX there arecharts zeU, f(z)eV with

Yofodt:p(U) - (V) dianalytic

e For f e Diff(X), X e #(X), the pullback f*X is the unique
structure such that

(5 %) - (3% is a morphism.

Definition: An orientable double cover of a non-orientable Klein surface
(%, X) is a Riemann surface (.S, X%) with

* adianalytic map :(S5,X%) - (3,X) unramified double cover

® an antianalytic involution ¢ : S — S such that moo = 7.

Compact case:  Sy-y —————= S

\ / Ny=Sg1/<0o>



Every f e Diff(Ny; k) admits exactly two liftings S;_1 - Sy-1,
one of which preserves orientation

f e Diff*(S,_1;2k)
This choice induces

DIff(N,; k) —> Diff*(S,_1;2k)

| |

Mod(Ny; k) —2> Mod(S,_1; 2k)

Theorem (Hope-Tillmann; Gongalves-Guaschi-Maldonado)

1. Ifg>3, ¢:Mod(Ny)—> Mod(S,_1) Iis injective.

2. Ifk>1, ¢:Mod(Ny;k) - Mod(Sy-1;2k) is injective Vg.



Teichmuller Space

Definition: X, e # (%) are Teichmiiller equivalent if there is
f e Diffg(X; k) such that f:(3,X)— (%;9) is a morphism.

Teichmdiller space:
R69-6+2k  orientable

T (2 ) = ¥,)/ Diffg(X4; k) =~
Ti(Eg) = A (34)/ Diffo(Xg; k) {R3g—3+2k non-orientable

For m:S4-1 - N, orientable double cover of a non-orientable
Klein surface Ny,

1. The map is injective
7 T (Ng) > Tk (Sg-1)

[(X] — [7"X]
2. The image of 7* is
T (T (Ng)) = {[X] € Tor(Sg-1) | [07%] = [X]}
= To1(Sg-1) o+



Nielsen Realization Theorem

® Have injections
¢+ Mod(N; k) - Mod(S,_1;2k)

T T (Ng) —> Tor(Sg-1)

® Mod(Ngy;k) acts on J(Ny) by pullbacks.

For [X] € Jx(Ny) and o € Mod(Ngy; k)

m (a-[X]) = ¢(a) - 7" [X]

Theorem (Colin, X) Every finite group G € Mod(Ng; k) acting on
Tk (Ny) has a fixed point.



Proof:
Let H c Mod*(S,-1;2k) be the Sg-r —————= 8

subgp generated by ¢(G) and [o]. \ /

= H=GxZ[2 ¢ Mod*(S,1;2k)

* [Wolpert] = 3 [9]e€Tok(Sg-1) fixed by H
In particular [o]-[D] = [¢*D] = [D]
= [Y]=7"[X] forsome [X]eT(N,)

e Thus, Vae G

m (- [X]) = ¢(a) 77 [X]
=7 [X]

©* monomorphism = «-[X]=[X] o



Non-existence of sections

Question: What about infinite subgroups of Mod(N)?
In particular, 3s?

p: Diff(Ng) ——Mod(N,)

Use characteristic clases:

For ¢:E — B smooth (orientable) surface bundle,
e T, FE = vertical bundle = ker{d¢ : TE - T B}
e T,FE = 2-dim oriented vector bundle /FE
ee H?(E;Z) Euler class
Definition: (Miller-Morita-Mumford classes for &)
k(&) =& (e(TLE)"") e H"(B; Z)

where & :H*(E;Z) ~ H**(B;Z) is the umkehr map.



Universal bundle:

S
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Have classes:

e H*"(BDIff*(S,);Z) = H*"(Mod(S,);Z)

Theorem (Miller, Morita, Harer)
Q[k1,k2,...] — H*(Mod(S,); Q)

which is an iso in the stable range * < %(g— 1).



Becker-Gottlieb transfer: trff 1 X*°B, > X*FE,

trf*

H*(B)—>H*(E)—=H"*(B)
x(F)
Oriented case: trfg(:zz) = (:c U e(TvE))

= (@) = trf ((TLE)")
and in particular
Ran () = trf? (p1 (TLE)")

p1 = first Pontryagin class

Non-oriented case: 7 : E — B non-oriented surface bundle

Gi(n) = trfy (1 (TLE)) « H(B;1Z)



——=N,

£
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¢ € H*¥(BDIff(N,); Z) = H*(Mod(N,);Z)

Q
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B Diff(N,) <

Have classes:

Theorem (Wahl; Galatius-Madsen-Tillmann-Weiss)

Q[¢1,¢2:-- -] — H*(Mod(Ny): Q)

which is iso in the stable range * < 97_3.

= (#0 in HY*(=Q) if ¢g>16i+3



Theorem (Colin, X.) If g > 35, the projection p: Diff(Ny) - Mod(N,)
does not have a section.

l If p: Diffs(N,) — Mod(N,), then

p (&) =0 in HY(Diffs(N,);Q)  for i>2.

Proof: If there was a section

Diffs(N,) H*( Diffs(N,); Q)
L > T l S (G) =G # 0
Mod(N,) H*(Mod(N,); Q)

g>16i+3
Fori=2, (#0 if ¢g>16(2)+3=35,

but by the Lemma p*({;)=0fori>2. O



Farrell Cohomology
Definition: Let T' gp with n=vcd(T') < 0o, M any I-module

H*(I;M):=H" (Homp(ﬁ;M))

HY(T; M) = HYT; M) fori>n.

HY(T; M) =0 ifT is torsion-free.

H(T; M) are torsion groups
o (T;2) = [ H* (T3 2) )
p

* T has p-periodic cohomology if H*(I';Z) () = H*4I;Z) )
® Brown's Formula:

H T;Z) ¢y 2 ] B (N(Zp); Z) )
ZpeS



Let ' gp. of finite vdc and 7 <T' of odd prime order p.

1 A r /A 1
7.(._;)1_ H*(W;FP):E[IL‘J@FP[UQ:I

H* (D 2) — H* (13 2) 2222 B [u] € H* (1;F,)

® 3 amax. m=m(w,T) such that

im(HM(;2) > HYN(m2)) € Fy[u™] € H* (m;F,)

e |f T p-periodic gp, then p-period is given by
p(T) =l.em.{2-m(m,T) | m<Torderp }

Theorem (Colin, X.) Let g > 2, p odd prime. If Mod(Ny; k) contains
p-torsion, then the p-period is 4.



Idea of Proof:
GL3(R) ——> GL(R) Afag : Ty Ny = Tg N,

Faithful
rep.
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First Chern class ]

0+v H*(BF)<~—— H*BDiff(N,; 1)

H*(Br) <——— H*BMod(N,;1)
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Fixed point data
Fixed point data for diffeo’s: Let ¢ € Diff"(.S,) of order p,

<¢p>=1ZLlp C S

Sing(< ¢ >) = {x;} = (finite) set of fixed points

® ¢ acts by rotation on T}, (S,) wrt a fixed RS structure

Let 0<B;<p st ¢% acts by mult. by ¢27i/?

6(¢) = (Br,--.,B)

[Nielsen] @1, @2 of order p, conjugated < 6(p1) = 5(¢p2).

[Symonds] §(¢) depends only on the isotopy class of ¢.

So, for [¢] € Mod(S,) 5([#]) = (B1,---,5t)

* [#1], [¢2] € Mod(Sy) conjugated < 6([¢1]) = 6([¢2])-



Non-orientable case: For ¢ € Diff(IN,;) of order p
5((;5) = (ﬂlv ce 7[375)

® Well defined up to sign.
* 0(0)26(¢") = (Br,-..,B) = (e1B1,-..,64B;), €i==1

Non-orientable case, marked points: For ¢ € Diff(Ngy; k) of order p
5k(¢) = (/817 cee 75/6 ‘ Bk+1a .. ~a/8t)

where
e (B1,...,0k) ordered k-tuple, fixed point data of marked points.
® (Bk+1,-..,0:) unordered (¢ — k)-tuple.
® Similar Z notion.

Well defined on Mod(N,) and Mod(Ng; k).

[61], [62] € Mod(S,;k) conjugated < 3,([61]) = di([92]).



Theorem (Colin, X.)

1. Mod(Ny; k) contains a subgroup of order p if and only if the
Riemann-Hurwitz equation

g-2=p(h-2)+t(p-1)

has an integer solution with t >k, h > 1.

2. For all g >2 and odd prime p, if Mod(Ny; k) has p-torsion then it
has p-periodic cohomology.

Theorem Let g >2, k>1 and ¢t > 1 an integer satisfying the equation

g-2=p(h-2)+t(p-1),
then,

(1,82, Br | Brss-- . Bt) subgps of Mod(N,, k) acting

Congruence classes of t-tuples Conjugacy classes of order p
with 0 < 85 <p on N, w/ t fixed points



Case g=p Only solution: (h,t) =(1,2)

Theorem: Let Z, < Mod(N,; k), with k =1,2. Then N(Z,) = D5, and
thus
Z, 1=0 mod 4

HZ(N(Zp);Z)(p):{O i=1,2,3 mod 4.

Theorem: Let p be an odd prime. Then, for k=1,2

- (Z,)% =0 mod4
H'(Mod(Ny, k); Z) () :{0 ! i=1,2,3 mod 4



