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1. Outline

The main aim of this work in progress is to study Mé&bius transformations in PSL(2, O) i.e., trans-
formations of the form

f@) = (aq +b)(cq +d)~"
where q belongs to a quaternion K-algebra B of a number field K , a,b, ¢,d € O where O is an order
in the ring of integers of K. number field. We try to generalize in this setting the classical modular
groups, Hilbert-Blumenthal and Bianchi groups and the geometric properties of their actions on 4
and 5 dimensional hyperbolic spaces and products of these spaces.

1) Juan Pablo Diaz, Alberto Verjovsky, and Fabio Vlacci. Quaternionic Kleinian modu-
lar groups and arithmetic hyperbolic orbifolds over the quaternions. Geom. Dedicata,
192:127-155, 2018.
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2. Quaternion algebras

2.1 - General definitions

Let K be a field of characteristic 0. We will say that a K-algebra B is a quaternion algebra over K,
if there exist i,j € B such that {1,1,],ij} is a K-basis for B and

2

i?=a, j?=bandij= —ji=k, (sothatk®= —ab)

for some a,b e K*. The quaternion algebra B is usually denoted by (“I’(b> or by (a,b | K).

In particular, when K = Rand a =b = —1 (theni=+/~1=14,j=+/—-1=jandij=ij = k),
the quaternion algebra (—1, —1 | R) is the classical algebra of Hamilton’s quaternions which is usually
denoted by H.

More generally, if B = (a,b | R) is a quaternion algebra over R, then B ~ M3(R) or B ~ H
(this last case occurs if and only if a,b < 0). On the other hand, when K = C we have that
B = (a,b| C) ~My(C) for all a,b e C*.



PUT(P)

Figure 1. Schematic picture of the chimney which is the fundamental domain of the parabolic
group Tgm(z) (generated by the translations 73, 75 and 7i), the polytope P and the polytope P and
its inversion T(P). The horizontal plane represents the purely imaginary quaternions that forms
the ideal boundary dH}; ~ S? and above it the open half-space of quaternions with positive real
part Hi;. In the same fashion the ideal boundary of hyperbolic 5-space 0Hj ~ S*



Inspired by the complex conjugation we can define a standard involution on B given by the map
—:B— B
q=t+zit+yj+zij—q=1t—zi—yj— 7j.

The existence of such involution allows us to define a reduced trace trd : B — K by trd(q) :=q +q

and a reduced norm nrd : B — K by nrd(q) := qq. Then, we can define R(q) := %(Q) and

|q| := nrd(q). We remark that the reduced trace is K-linear and the reduced norm is multiplicative
on B*.



Of particular interest to us will be the K-subspace of pure elements of B defined as
B%:={qe B|trd(q) = 0}
and the normal subgroup
B':={qe B* | nrd(q) = 1}
of B* of elements of reduced norm 1. When B ~ H, we have that H° ~ R? is the subspace of
classical pure Hamiltonians and H' is the classical subgroup of unit Hamiltonians.

Remark 1. As a set, the unit Hamiltonians are naturally identified with the 3-sphere S in R*. The
group H! acts by rotation on HY ~ R? (on the left) via conjugation w ~ qwq~!. This action defines
a group homomorphism H! — SO(3), fitting into the following exact sequence

1 — {1} — H' — SO(3) — 1.

The interpretation of the quotient group H'/{£1} as the group of rotations of R? is very useful to
determine certain algebraic substructures in H'.



For example, from the classification of finite groups of SO(3) we have that each finite subgroup
of H', is isomorphic to one of the following groups:

i. a cyclic group C), of order n generated by s, = cos(27/n) + isin(27/n);
il. a binary dihedral (dicyclic) group Qg4 of order 4n generated by sa, and j;
iii. the binary tetrahedral group 2T of order 24 with presentation given by
(rys,t|r? =83 =t>=rst=1)
where r =i, s = 3(1+i+j+k)andt = 3(1 +i+j—k);
iv. the binary octahedral group 20 of order 48 with presentation given by
(rys,t|r? =83 =t =rst=1)

where r = L (i+j), s = 5(1+i+j+k) and t = 2 (1 +14); or

S
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v. the binary icosahedral group 21 of order 120 with presentation given by

(s,t] (st)? =8> =10 =rst=1)

where s = 2(1+i+j+k),t=3(p+¢ ti+j)and ¢ = 1+2\/g is the golden ratio.

[Marie-France Vignéras. Arithmétique des algébres de quaternions, volume 800 of Lect. Notes
Math. Springer, Cham, 1980.]

2.2 - Quaternion orders over quadratic fields

Let K = Q(y/n) be a quadratic field, for some square-free n € N, and denote by o the non-trivial
element of Gal(K /Q), which acts on a+8+/n € K as o(a+£+4/n) = a—B+/n. Let Zx = Z[0] := Z®ZO
be the ring of integers of K, where

g v/n o ifns#1 mod4
B # ifn=1 mod4’



Given a place v of K, we denote by K, the completion of K at v, which is isomorphic to R or
C (at the archimedean places) or to a finite extension of Q, (at the non-archimedean places). We
say that a quaternion algebra B over K is totally definite if for all real archimedian places v of K,
B, := B&gK, ~ H. We remark that, when v is a complex place, we have that B, = B&gC ~ M;(C).
Therefore, if B is a totally definite quaternion algebra over K, then K is necessarily a real quadratic
field. In particular, we will denote by By the totally definite quaternion algebra (—1, —1 | K') defined
over the real quadratic field K.

Definition 2.1. A Zg-order O, in a quaternion algebra B over K, is a 4-dimensional Zg-lattice
in B that is also a ring with unity. Moreover, O is called maximal if no other Z-order properly
contains it.

Remark 2. Maximal Zg-orders are analogous to rings of integers of number fields but an important
difference is that rings of integers are unique, while a quaternion algebra can have many maximal
Z-orders. For example, if @ < B is a maximal Zg-order and q € B*, then qOq~! < B is a
maximal Zg-order, but as B is noncommutative, we may have qOq~! # O.



Ezample 1. Let a,b € Zg\{0} and B = (a,b | K). The most natural example of a Zg-order is the

standard order in B

In particular, when B = By (the totally definite quaternion algebra (—1,—1 | K) defined over the
real quadratic field K) , H(Zk) := O, = Zx ®Zki® Zkj ® Zkk is properly contained in the
quaternion Zg-order

Hur(ZK) = ZK (—B ZKi (—D ZKj (—D ZKf,

where £ = W, showing that H(Z) is never a maximal Z -order in By . These orders generalize
the rings of Lipschiz and Hurwitz integers H(Z) and Hur(Z) studied in

Juan Pablo Diaz, Alberto Verjovsky, and Fabio Vlacci. Quaternionic Kleinian modular
groups and arithmetic hyperbolic orbifolds over the quaternions. Geom. Dedicata, 192:127—
155, 2018.



However, in contrast to the maximality of Hur(Z) in (—1,—1 | Q), Hur(Zg) is not always
maximal in B.
For example, if K = Q(+/2) we can define the binary octahedral order of BQ(\@) as

Op = Z[V2] @ Z[V2]n ® Z[V2]6 ® Z[V2]ns,
where 7 = 1 and § = L2, which properly contains Hur(Z[v/2]).

V2 V2’
Similarly, when K = Q(+/5), we can define the binary icosahedral order of BQ( V5) a8

O35 = Z[p] ® Z[p)i ® Z[¢]¢ @ Z[¢]iC,

where ¢ is the golden ratio and ¢ = %ﬂj, which properly contains Hur(Z[¢]). In fact, Op and

05 are maximal Zg-orders of BQ( V) and BQ( V) respectively.



2.8 - Unit groups of quaternion orders

In number theory a very important subgroup of Zg is the unit group Zy. When K is a real quadratic
field, by Dirichlet’s unit theorem, we have that

7} = {xct  tez, (1)

where ¢ is the fundamental unit of Z x normalized so that € > 1 for the canonical embedding K — R.

A description of the unit group O of a Zg-order O in an arbitrary quaternion algebra is more
complicated. However, as we are only interested in Z -orders in a totally definite quaternion algebras
B over K, we can describe O* in terms of Zy and the torsion group O' := {u e O* : nrd(u) = 1}
(which is a finite subgroup of O* of O as follows:



Let K :={we K* :w> 0 and o(w) > 0} be the group of totally positive elements of K* and
Zijc, = Zg n K be the group of totally positive units in Zg. As nrd(O) € Zg and nrd(B*) < K7
, we have that nrd(O*) € Zy, . Then, the reduced norm induces the following exact sequence

1 nrd
1— O — 0 M 7%,

which implies that O! is a normal subgroup of @*. On the other hand, as Z(B*) = K*, we have
that Zj, < Z(0*), which implies that Z% is a normal subgroup of O*. Thus, Z;O! is a normal
subgroup of O* and, as nrd(Z;0') = Zj

% » we have the following embedding
O )L} O" — L} JL72.
Since K is a real quadratic field, it is well known that Z%* = (¢?) and
7% (e) if Ngpple) =1
K+ <82> if NK/Q(E> = —1.



Then, if N g(e) = —1, we conclude that O* ~ Z3O' and if N g(e) = 1, we conclude that O* is
isomorphic to Z O or to a degree two extension of Z3O'. Finally, as K is a totally real field, the
finite subgroup O! is embedded in H! ~ S?. Then, we can obtain an explicit description of O' (and
then of O*) by using Dirichlet’s unit theorem (1) and Remark 1. The binary octahedral group and
binary icosahedral group appear only when K = Q(+/2) and K = Q(+/5), respectively.



2.4 - Linear groups with coefficients in a quaternion order

Let My (H) be the H-vector space (right or left, according to the setting) of 2 x 2 matrices with
entries in H. It can be proven that, all right-invertible matrices in My (H) are also left-invertible [2,
Proposition 2.3]. Then, we can define the general linear group GLo(H) as the set of all invertible
matrices of Ma(H).

Z) € My(H) is defined as the non

Recall that the Dieudonné determinant of a matrix v = (Ccl

negative real number

detis(7) =/ af?[d]2 + [e[2]b[2 — 2R(caba).

It can be proven that a matrix v € My (H) is invertible if and only if detg(y) # 0. Then, GLy(H) is
precisely the set of all matrices in M (H) having non zero Dieudonné determinant and we can define
the special linear group SLo(H) as the set of all matrices in GLy(H) with Dieudonné determinant 1.



Let K = Q(4/n) be a real quadratic field, which can be embedded in R. Then, since the
quaternion algebra By is totally definite, it can be embedded in H and, by restriction, we can
embed any quaternion Zg-order O of By in H. Let SL2(O) be the subset of all matrices in SLy(H)
with coefficients in O and PSLy(O) := SLy(O)/{£Z}, where Z denotes the identity matrix of size 2.
It can be shown that SLy(O) is a group and therefore PSLy(O) is also a group.

Lemma 2.1. SLy(O) is a subgroup of SLo(H).

Proof. Tt is clear that the right product of matrices in SLy(O) is well defined, associative and

7 € SLy(O) because O is a ring with unity. Then, we only need to prove that the right-inverse of
b

each v = (CCL d> € SL2(0) lies in SLy(O).
First assume that abed # 0, then one can show that,
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with a=!, b=, ¢!, d~! not necessarily in ©. Using the multiplicativity of the norm one proves that
la?|d — ca™'b]* = |b]*|c — db tal? =

b — ac™d|* = |d|?|a — bd " c|* = |al?|d|* + |¢|?|b]* — 2R(cabd) = 1.

gl = al=_a
Then, as q7* = [l and q " = [l
41 (a—bd~tc)™t (c—dbta)! _
(b—actd)~! (d—ca 1b)~!
(a=bd 'e) (e—db ‘@) |d)? (@=bd_'®)  |b® (e—db 'a)
la—bd—Tc]> Je—db-TalZ | _ | [dZ Ja=bd—Tc]z  [b% Je—db—Ta]?
(b—ac'd)  (d—ca 'b) le|* (b—ae~'d) |a|* (d—ca_'b)

[b—ac=1d]?  |d—ca=1b|?

_(1dP@-bd o) pre-db @) _
I[2(6—ae'd) |a|?(d —ca D)



AP (@~ Do) bP(e—dan))
PG~ ard) [al2(d D)

<d|2a —bde  |b|*c — dba)

SRS

lc|?b —@cd  |al?d — cab

with all its coefficients in O.
Now assume that one of the entries of v is 0. For example, if a = 0 and be # 0 it follows that

-1 —c7 bt ¢t
TOoT e 0
with ! and ¢! not necessarily in ©. Then, as the Dieudonné determinant is equal to 1, we have

that |c|?|b]?> = 1 and
-1 —ctdb! !
T et 0
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with all its coefficients in O. The other cases are analogous.



3. Quaternionic modular groups

3.1 - Quaternionic Mobius transformations

“ d) € GL2(H). We define the quaternionic Mdbius transformation associated to « as
the real analytic function

Let v =

F,:HuU {0} — HuU {w0} =S*
defined by

Fy(q) := (aq +0) - (cq+d)~", (2)
were we set I, (00) = w0 if ¢ = 0, F,(0) = ac™! if ¢ # 0, and F,(—c'd) = o0.

The Mobius transformation associated to «y is an orientation-preserving conformal diffeomorphism
of the 4-sphere with its standard metric.



Two elements ; and 7 determine the same Mobius transformation if and only it there exists
t > 0 so that v, = tIyy where I € GLo(H) is the identity matrix. therefore,

Confy(SY) = GLo(H)/{tI, ¢ > 0} 2 PSL(2, H).

where Conf, (S*) denotes the group of conformal diffeomorphisms of the round 4-sphere. By
Poincaré’s extension theorem, any conformal diffeomorphism f : S* — S* extends to an isome-
try f : B5 — B® Of the interior of the closed 5-ball B>  R® where the metric on the open 5-ball is
the Poincaré hyperbolic metric.

4(dz? + -+ + da?)

ds® =
ST U@t ad)

Terefore PSL(2,H) = Isom (B®) = Isom (H})



Let b, c € H, ¢ # 0. We define the left homothetic transformation h. : H — H as the map q — cq,
the translation T, : H — H as the map q — q + b, and the inversion I as the map q — q~! = \q\z

As in the complex case, every quaternionic Mobius transformation is a composition of homoth-
eties, translations and inversions. More precisely F,(q) can be decomposed as follows:

T

c—1laq

q—'>(q+c_1d)k>cq+di>

h _
(cq+d)! boeerld, (b—actd)(eq+d)~* Toe2, (b—actd)(cq+d)" +ac!
= (b—ac'd)(cq+d)"' +ac (cq+d)(cq+d)"" = (aq+ b)(cq +d)!
Therefore
F’Y =The-10hy_ge-1g0 L 0hc 0T -1g. (3)

On the other hand, we define the half-space model of the one dimensional quaternionic hyperbolic
space as
Hj = {qe H| R(q) >0} < H.



This space is isometric to the hyperbolic real space Hg := {(t,z,y,2) € R* | t > 0} of dimension 4
with the Poincaré metric
o d* +da® + dy® + d2?

= = .

Let My < PSLy(H) be the subgroup of quaternionic Mobius transformation leave invariant

ds

Hj;. It can be prove that any F, € MH;[ is conformal and preserves orientation, moreover it is an
isometry of H;. Then, My is isomorphic to the groups Con f. (Hjy) and Isom.. (Hj) of conformal

diffeomorphisms and isometries orientation-preserving of the half-space model Hj.
Moreover, MH@ acts by orientation-preserving conformal transformations on the sphere at infin-

ity of the hyperbolic 4-space defined as 0Hj; := {q € H | R(q) = 0} u{oo}. Then My = Conf,(S?).



The subgroup MHé{ € PSLy(H) can be characterized as the group induced by matrices which
satisfy one of the following equivalent BG-conditions (Bisi-Gentili), introduced by Bisi and Gentili
(which, in turn, are a variation of the conditions described by Ahlfors):

{’y € PSLy(H) | 5" <(1) (1)) v = G é)} : (4)
{(Z Z) € PSLy(H) | R(ae) = 0, R(bd) = 0, be + da = 1} , (5)

{(cce Z) € PSLy(H) | ®(cd) = 0, R(ad) = 0, ad + be = 1} : (6)



An important subgroup of MHIE is the affine subgroup A(H) consisting of transformations which
Aa b

0 )\_la)
satisfy BG-conditions). The group A(H) is the maximal subgroup of /\/lHﬂl41 which fixes the point at
infinity and any F, € A(H) acts as a conformal transformation on 0Hj};. Moreover A(H) is the group
of conformal and orientation preserving transformations acting on the space of pure quaternions at
infinity which can be identified with R?® so that A(H) =~ Conf(R?).

are induced by matrices of the form with |a] = 1, A > 0 and R(ba) = 0 (which clearly



A useful decomposition of the elements of MH%H is the Twasawa decomposition which states that
every y € MHul{ can be written in the form

SOOI

where A € R*, w € H°, and «, 8 € H satisfy |a|? + |3]? = 1 and R(aB) = 0. The first matrix is
a homothety fixing 0 and o0, the second matrix is a parabolic translation fixing o in the direction
of w and the third matrix is a 4-dimensional rotation. In fact, the set of all matrices of the form

(g g) , is isomorphic to the special orthogonal group SO(4) which is a real compact Lie groups of

dimension 6. Then, we can deduce that the set of matrices of PSLy(H) satisfying the BG-condition
has real dimension 10.



3.2 - The Bianchi quaternionic modular group

If O an order of (—1,—1| Q) let PSL2(0O) < PSLy(H) denote the subgroup

PSLy(0) = {(‘; Z) € PSLy(H) | a,b,c,d € 0}.

Let v = < (cl Z ) € PSL(2,H), then its Poincaré extension is given explicitly in the upper

half-space model H% :=H x R+ as follows:

dety ()t > .

" eq + d)? + |c|2t2

Hat) = (g ar s ) (aa+ 0@+ @ + act)

leq + d|? + |c|*t2

Since PSLy(0) is a discrete subgroup of PSLy(H) it follows from standard facts about Kleinan
groups that PSLy(O) acts properly and discontinuously on hyperbolic 5-space H3.



3.3 - The Hilbert-Blumenthal quaternionic modular group

Let K = Q(4/n) be a real quadratic field, Zy its ring of integers and O be a quaternion Zg-order
in the totally definite quaternion algebra By . It is well known that the embedding Zx — R is not
discrete, then (contrary to the previous case) we cannot discreetly embed O into H, and consequently
PSL3(0O) is not a discrete subgroup of PSLy(H). However, Zx admits a discrete embedding

Zx — R xR,

via the Galois twist w = a + f4/n — (w,0(w)) = (o + By/n,a — B4/n), which induce a discrete
embedding
O Hx H, (8)
given by q — (q,0(q)) = (¢t + zi + yj + zk, o(t) + o(z)i + o(y)j + o(2)k), and finally (8) extend to
a discrete embedding
PSLy(O) <> PSLy(H) x PSLy(H). 9)

Then, we can identify the elements of PSLs(O) with their image under (9).



Remark 3. We remark that the embedding (8) is more natural from the point of view of Minkowski’s
geometry of numbers in the sense that as By is a totally definite quaternion algebra over a quadratic
real field then Bx ®q R = H x H.

Let HZ := H x H < H x H which is isometric to Hg x Hg with the Riemannian product
metric of Poincaré metrics. As expected, PSLy(H) x PSLa(H) acts on H x H by quaternionic Mébius
transformations (y1,72) - (q1,d2) = (Fy, (d1), Fy,(q2)) but not all (y1,72) € PSLay(H) x PSLy(H)
leaves invariant HZ. As in the 1-dimensional case §3.1, the set Mpz € PSLy(H) x PSLy(H) of
couples (71,72) of matrices that leaves invariant HZ is isomorphic to Conf1 (H%) and Isom, (HZ),
and it can be characterized as the set of (y1,72) € PSLa(H) x PSLy(H) such that both v, and
~o satisfy the BG-conditions. Moreover, /\/IH%J1 acts on the boundary 0HZ =~ S® x S of HZ and

Mpz = Confi(S® x S%).



Now, we are ready to describe a kind of isometries of H% lying in
PSL5%(0) = PSLy(0) N Mgz
which will be used to define our quaternionic modular group.

Definition 3.1. Let O be a quaternion Zg-order in Bx and SO be the set of pure elements of By
lying in ©. We define the subgroup of SO-translations of PSLEC(0) as

T%O = {Tb = <(1) ll)) € PSLQ(O) | be %O} .



A translation in HZ is defined as a transformation
T(bl,bz) = (F’Yl’F’Yz) : H]I2-]I - H%]I

associated to a couple of matrices of the form

= (35 )

where b; and by are such that R(b;) = 0 and R(b3) = 0. Note that, if b € O and R(b) = 0, then
R(o(b)) = 0 and we can identify the group Tse with the set of translations in HZ of the form
T(b,o’(b))v with b e SO.



Remark 4. Note that, if O is the Lipschitz order H(Zk) := {q =t + zi + yj + zk | w,x,y,2 € Zk}
of By, we have that

1 . .

in analogy with the imaginary part of a complex number. However, SO is not always equal to the
set {%(q —1q) | g € O}. For example, let K = Q(y/n), with n £ 1 mod 4, then its ring of integers
Zy = Z[/n]. Let

1
Hur(Z[vn]) ={a=t+zi+yj+ 2k | t,z,y,2 € Z[/n] or t,z,y, 2z € Z[/n] + 5}

be the Hurwitz Qrder of By(m)- It is easy to see that w € {i(q- G) | q € Z[y/n]} < BY, by
taking q = W € Z[+/n], but W ¢ Hur(Z[+/n]) and in particular % ¢ SHur(Z[+/n]).



Definition 3.2. Let O be a quaternion Zg-order in Bx and ¢ be the fundamental unit of Zx. We
define the scalar unitary subgroup of PSLE®(O) as the set of matrices

U(0) = {Dg — (?: 602) € PSL,(0) | L N}.

A left bi-homothetic transformation in H% is defined as a transformation Ry ,es) HZ - HZ
given by the map (q1,q2) — (c14Q1, ¢2q2), where ¢1, ¢co € H are such that R(ci1qp) > 0 and R(caqz) >
0. Note that Dy € U(O) defines the left bi-homothetic transformation h.z¢ ;(-y2¢) in Hg.

Definition 3.3. Let O be a quaternion Zg-order in Bx. We define the torsion unitary subgroup of
PSLEC(0) as the set of matrices

U (0) = {Du = (B‘ 3) e PSLy(0) |ue 01}.



Recall from Remark 1, that H' acts by rotation on H° ~ R? via conjugation. Then, we define
a left bi-rotation in HZ as a transformation T(up,uz) HZ — H3 given by the map (qi1,q2) —
(wiquu; b, usqouy ), where uy, up € H. Note that as O' < H! and o(u) € O' for all u e O', then
Dy € U(O) defines the left bi-rotation T(w,0(w)) i HZ.

Finally the inversion in HZ is defined as (I, 1) : H% — H%, were I is the usual inversion defined

. (0 1
by the matrix <1 0).

Definition 3.4. Let K be a real quadratic field, and O be a quaternion Zg-order in the quaternion
algebra Br. We define the O-quaternionic modular group T'(O) as the group generated by U.(O),
U (0), Tso and I. Moreover, we define the O-affine subgroup A(O) of T'(O) as the group generated
by U:(0), U'(O) and Tse (without the involution I).



Remark 5. When Ng g(e) = 1, O* could be a degree two extension of Z7O! and, in such case,
0% ~ Z7%OY1 + iy which follows from [9, Proposition 6] and [Table 4.3, §8][1]. However, we do not
include 1 + ¢ in Definition 3.2 or in Definition 3.3, then in Definition 3.4, because in bot cases 1 + ¢
does not produce a matrix satisfying BG-conditions.

One can show thet I'(0) = PSLE¢(0).

Definition 3.5. Let K be a real quadratic field, and O be a quaternion Zg-order in the quaternion
algebra Byi. We define the Hilbert-Blumenthal quaternionic orbifold associated to O as

Mr (o) = T(O)\HE.



4. Cusps of Hilbert-Blumenthal quaternionic orbifold

In this section we give a description of the cusps of the Hilbert-Blumenthal quaternionic orbifold
M) following [5] and [7].

Recall that an ¢-torus bundle over an m-torus is the total space of a fiber bundle with base
manifold the m-torus 7™ and fiber the f-torus T*. We call such manifolds simply (¢,m)-torus
bundles. We say that M is a virtual (¢, m)—torus bundle if M is finitely covered by an (¢, m)—torus
bundle.

Let K be a real quadratic field, and O be a quaternion Zy-order in the quaternion algebra By .
We define the affine Hilbert-Blumenthal quaternionic orbifold associated to O as

MA(O) = .A(O)\H]%I

Note that in a small neighborhood of (00,00) M 40y and Mr(p) coincide. The main goal of this
section is to prove the following result:

Theorem 4.1. A cusp cross-section of M (o) is a virtual (6,1)-torus bundle.



Proof. First, let’s find A in Zp x Zy , = 72 x4 Z assuming that K = Q(y/n) with n # 1 mod 4.
Let ¢ = X +Y+/n be the fundamental unit of Zy. The attaching map comes from the homotheties
that translate toward the cusp, which are given by the Mobius action of powers of the matrix

(X +0Y\/ﬁ (X + }9\/5)1> on an integer a + bv/2 € Z[/n], where X + Y/n is a fundamental

unit. Since this action is
a+byn— (X +Yvn)*(a+byn) =
(X2 +nYHa+2Ynb+ (2Ya + (X2 + nY?)b)y/n,
2 2
A <X +nY 2Yn

9y X2 4 nY2>’ and we see this as an action on Zg via the identification

a+b\/ﬁw<z>.



Now, let I' = SO x Zy; . , the cusp cross-section subgroup of the group obtained by omitting the
rotations in @'. Then

Stabr(o0) = { <(X + (1)”\/77)@ gi%ﬁ\%%) 'f:z:yz e Z}.

This would effect each of xi,yj, 2ij in the same way that a + by/n was effected in the Hilbert case
above. So this gives an action Z% — Aut(Z°) implying I' =~ Z°® x4 Z with

(X2+nY?) 2¥Yn 0 0 0 0
2Y  (X?+nY?) 0 0 0 0
- 0 0 (X2 +nY?%)  2Yn 0 0
A= 0 0 2Y (X% +nY?) 0 0 (10)
0 0 0 0 (X2+nY?) 2¥Yn
0 0 0 0 2Y (X2 +nY?)

Since this group is torsion-free, it gives a finite covering (which is a manifold) of the cusp cross-



sections of our orbifolds. We remark that, extending the analogy from the Hilbert modular varieties,
the manifold is a 7-solvmanifold.

When K = Q(y/n) with n =1 mod 4, we can obtain the matrix A by similar calculations but
we do not have a general formula through all n. We include the following examples to illustrate this
phenomenon. O

Example 2. Let’s find A in Zy % Z[X(’+ =~ 72 x4 Z for K = Q(+/5). The attaching map comes from
the homotheties that translate toward the cusp, which are given by the Mdbius action of powers of

1+/5
the matrix (8 601) = < (2) _1_(2\/5> on an integer a+00 = a+0b (%) Since this action is
2

a+ b0 — e*(a+0b) =%+ e*0b = <3+2\/5> a+ <3+2\/5> ob



_a+<1+*/g)a+9b+ 1+2\/5)9b

2

(
e (S5 (L) (225,
=a+ <1+2\/5>a+b+2(1+2\/3>b

_a+b+(a+2b)(1+2\/5>

11 . . . . . .
A= (1 2), and we see this as an action on Zg via the identification

a+b9<—><2).



Now, let I' = SO x Zy; . , the cusp cross-section subgroup of the group obtained by omitting the
rotations in @'. Then

0
1+2ﬁ) @i+ yj + 2ij

Stabp(oo)—{ ( . <%)—e

‘E,x,%zeZ}.

This would effect each of xi,yj, zij in the same way that a + b (1+2\/5) was effected in the Hilbert



case. So this gives an action Zj — Aut(Z°) implying I' =~ Z°® x 4 Z with

(=N eNeNol
= elaeBel VS
SO R Rk OO
SO NEHE OO
_ -0 0O OO
D= OO OO

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Ezxample 3. Let’s find Ain Zx x Zj | = 7> x4 Z for K = Q(+/13). The attaching map comes from
the homotheties that translate toward the cusp, which are given by the Mobius action of powers of

c 0 34413 0
the matrix <0 5_1> = (2) _3,yq3 | Onan integer a +b0 = a+0 (%) Since this action
2



is

o

11 1 11 1
a+ b0 — £*(a+ 0b) = e2a + £20b = (Jr;’\/73>a+ <+3\/73

2
=a(4 +30) + b0(4 + 30)
= 4a + 3ab + 4b0 + 306>

7+2\/ﬁ>

=4a + 3af + 4b0 + 3b(3 + 0)
=4a+9b+ (3a+7b)0

—4a+3a9+4b9+3b(

49

3 7>, and we see this as an action on Zg via the identification

a+b9<—><2).

Jov



Now, let I' = SO x Zy; . , the cusp cross-section subgroup of the group obtained by omitting the
rotations in @'. Then

- E . . ..
3+5/§) xi+ yj + zij

stabr() = { ( o ()T

’E,a@y,zeZ}.

This would effect each of xi,yj, zij in the same way that a + b (%) was effected in the Hilbert



case. So this gives an action Zj — Aut(Z°) implying I' =~ Z°® x 4 Z with

4.9 0 0 0O
370 0 00
A=004900
003 7 00
0 000 49
000 037

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Ezample 4. Let’s find A in Zg x Zp , = 72 % 4 7 for the case where K = Q(+/2). The attaching
map comes from the homotheties that translate toward the cusp, which are given by the Mobius

1++/2 0

action of powers of the matrix ( 0 14 \/5> on an integer a + by/2. Since this action is

a+0vV2 > (1+v2)%a+bvV2) = 3a + 4b + (2a + 3b)V/2,



4 . . . . . .
A= (g 3>, and we see this as an action on Zy via the identification

a+b\/§<—><‘;>.

Notice how only even powers of the fundamental unit correspond to Md&bius actions in this way,
resembling how Zy , = 22(2).

We can also think of this as the attaching map from the inside to the outside of a thickened
torus. Thus the cusp of the Hilbert-Blumenthal surface (Hg x Hg)/PSLa(Zg,/5)) has fundamental

group Z2 x 4 Z. Moreover, we have an injection

7% x4 7 — PSLy(Z[V2]) : ( (Z) ,g) . ((1 +0\/§)" (_al++bg)é) , (11)

Now, let I' = SO % ZIX(, +» the cusp cross-section subgroup of the group obtained by omitting the



rotations in O!. Then

Stabr(o0) = { ((1 +0\/5)" m’(1+ f{g;”)

This would effect each of 24, yj, zij in the same way that a 4+ by/2 was effected in the Hilbert case.
More precisel, the attaching map comes from the homotheties that translate toward the cusp, which

1++/2 0

are given by the Mdbius action of powers of the matrix ( o . \/§> on a pure quaternion
(a+bV2)i + (c+ dv2)j + (e + fv/2)k.
(a+bV2)i+ (c+dv2)j + (e + fV2)k — (1 +V2)*((a + dV2)i + (c + dV2)j + (e + fV2)k)
= ((1+v2)%(a +bv2))i + (1 + V2)%(c + dv2))j + (1 + vV2)(e + fV2))k
= ((3a + 4b) + (2a + 3b)V/2)i + ((3¢ + 4d) + (2¢ + 3d)V2)j + ((3e + 4f) + (2¢ + 3f)V2)k

E,x,y,zeZ}.



So this gives the matrix

34 0 000
23 0000
A:OO34OO
002300
0 000 3 4
0 000 2 3

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Now we will study the Mobius action of powers of the matrix (u 101) on a pure quaternion

0
(a4 bV2)i + (c+ dv2)j + (e + fv/2)k, where u € H(Zg)' = {£1, +i + j, +5}.

(a+bV2)i+ (c+ dvV2)j + (e + [V2)k — u((a + bV2)i + (¢ + dV2)j + (e + fV2)k)u™?
= (a+bV2)uiu! + (c + dvV2)ujut + (e + fv2)uku !



(if u = i with u=! = —4)
= (a + bV2)ii(—i) + (c + dV2)ij(—i) + (e + fV/2)ik(—i)
= (a+bV2)i — (c+ dV2)j — (e + fV2)k

which gives the matrix

10 0 0 0 O
0601 0 0 0 O
00 -1 0 0 O
A= 00 0 -1 0 O
0o 0 o0 -1 0
00 0 0 0 -1
similarly if u = j with u=! = —j,

(a+0V2)uiu™! + (c + dv2)uju™! + (e + fv2)uku™?



= (a +bv2)ji(—j) + (c + dv2)jj(—j) + (e + FV2)jk(—))
= —(a+bV2)i + (c+dV2)j — (e + [V2)k

which gives the matrix

-1 0 00 0 0
0 -1 00 0 0
0 0 10 0 0

A=10 0 01 0 o
0 0 00 -1 0

100\ /-1 0 0 1 0 0 -1 0 0
o1of],lo -1 o], (o -1 o],[0o 1 0o,
00 1 0 0 -1/ \0 0 -1 0 0 1



Now consider u € Hur(Zg)' = H(Zg)' U { Llxitjrk } Then we have for example, if u = EHF

1—i—j—k

and u=! = 3

(a+bV2)uiu™! + (¢ + dvV2)uju=t + (e + fV/2)uku?

:i((a—kb\/i)(l+i+j+k)i(1—i—j—k)+
e+ dV2) A +it+i+k)jl—i—j—k)+(e+ fV2)A+i+j+hk(l—i—7—k)

_ i((a + bV2)(45) + (c + dV2)(4k) + (e + [v/2)(40)



= (e + fV2)i+ (a +bV2)j + (c + dV2)k

which gives the matrix of order 3

000 010
000 0 01
A 10 00 00
01 00 00
001 00O
000 1 00
corresponding to the matrix
0 0 1
1 0 0],
010

In general the 16 new matrix corresponds to the non diagonal (but with a diagonal minor)



matrices with coefficients +1

o = O

= O O

SO =



4.1 - Class number of a quaternion order

Let K = Q or a real quadratic field, Zy its ring of integers, Bx = (—1,—1 | K) and I < Bk be a
Z-lattice. Then
Or(I) :={aeBk:lac I}

is a Zg-order in By called the right order of I. Similarly, we can define the left order of I by
Or(I):={ae Bk :al cI}.

Let I,J € Bk be Zk-lattices. We define the product IJ, as the Zi-submodule of By generated
by the set {af8: a €I, € J}. In fact, IJ is a Zg-lattice too. We will say that a Zg-lattice I < Bk
is inwvertible if there exists a lattice I’ = Bx such that

II/ = OL(I> = OR(I/) and I,I = OL(II) = OR<I>

On the other hand, we say that two Zg-lattices I,J < Bk are in the same right class, if there
exists a € By such that ol = J, and we write I ~p J. The relation ~p defines an equivalence



relation on the set of Zg-lattices in Bk, then we will denote by [I]gr the equivalence class of the
Z-lattice I. In particular, when [ is an invertible lattice, every lattice in the class [I]g is invertible.
Now, let O be a Zg-order in Byx. A right fractional O-ideal is a lattice I < By such that
O < Or(I). Similarly we can define a left fractional O-ideal. We define the (right) class set of O
as the set
Clsr(0) :={[I]r : I is an invertible right fractional O-ideal}.

The set Clsg(O) has a distinguished element [O]r € Clsg(O), so it has the structure of a
pointed set. However, in general it does not have the structure of a group under multiplication. For
example, for classes [I|g, [J]|r, we have that [aJ|g = [J]g for o € Bj; but we need not have that
[IaJ]|r = [IJ]R, because of the lack of commutativity.

We remark that the analogue left relation can be defined and the map I ~— I, induced by the
standard involution in By, interchanges left and right. Then we will abbreviate

Cls(0) = Clsp(0).



It can be proven, by using the analogue geometry of numbers [11, Main Theorem 17.7.1], that Cis(O)
is finite and we can define the (right) class number of O as

ho = #Cls(O)

Of particular interest to us are when O is maximal. In this case all lattices are invertible and it
can be proven that an invertible right fractional O-ideal can be generated as a right O-ideal by two
elements «, 5 € Bj. The result follows from Exercise 16.6 and Main Theorem 16.7.7 of [11].

4.2 - Motivating example

Let .
H]R = {(qat) qE€ H7 t= O}



b
d

. . T30 . p .
This action can be extended to Hy as follows (the Poincaré’s extension of F.,):

As we pointed out above, each y = (CCL ) € PSL(2,H) acts on Hu{oo} by Mobius transformations.

1
leq + d|? + |c|?t2

_ t
b)(qe + d ct?), det .
((aq + b)(qc + d) + act™), ﬁ(7)|cq+d|2+|c|2t2>

F5(q,t) = (

In particular, when ¢ = 0 the Poincare extension F5 of F, correspond to the action of F, on H.
Let O be a Z-order in By = (—1,—1 | Q) and consider PSLy(O) which is a discrete subgroups of
PSLo(H). Then we can define the Bianchi quaternionic orbifold as

Mo = Hj/PSLy(O).

which is a real 5-dimensional orbifolds of finite hyperbolic volume. Examples of such orbifolds are
described in the extended version of [3] when O is the ring H(Z) of Lipschitz integers and the ring
Hur(Z) of Hurwitz integers.



Note that the embedding of By < H induce an embedding
PY(B) — P'(H). (12)
The orbits of P*(B) under PSLy(O) is called the cusps of PSLy(0O).
Proposition 4.2. My, (z) has only one cusp.

Proof. As Hur(Z) is a lattice of H we have that Hur(Z) - Q = H then each element § of H can be
write as f = ac™! with a € Hur(Z), 0 # ¢ € Z and ged(a,c) = 1. By right Bézout’s theorem [11,
Corollary 11.3.6] there exists u, v € Hur(Z) such that

ap—cv = 1.

This gives v = <j Z) such that F,(c0) = ac™!. Using Lemma 2.4 of [?] and the commutativity

of ¢, we have that

detzz(7) = V/]af2[ul? + [c[?[v]? — 2R(cavn) =



Viev —cac )2 = y/]ap —ev)]2 =1
then v € PSLy(Hur(Z)). Thus the only cusp of My, (z) is the orbit of co. O

From [I 1, Proposition 11.3.4] we have that hgy,zy = 1, then we have the following corollary.
Corollary 4.3. The number of cusps of My, (z) is equal to hypyy(z)-

The proof of Theorem 4.2 works for any (left) Euclidean order O in Bg (or even in By for a
quadratic real field and Mo := (H3 x H3)/PSL2(O). However, there are examples of non-Euclidean
orders even in By as follows:



On the other hand we have the following result:
Proposition 4.4. Myz) has at least two cusps.

Proof. (Sketch) I =2H(Z) + (1 + i+ j + k)H(Z)
is not a principal ideal of H(Z). As H(Z) is not a Bézout ring, it can be proven that oo = (1;0) =
PL(H) and (1 + i+ j + k;2) € P1(H) are in two different orbits of PSLy(H(Z)). O

As hy(z) = 2 we have the following result.

Corollary 4.5. The number of cusps of Myz) is = hyz)-



5. Hilbert quaternionic varieties (n-dimensional case)

Let
Hj = {q € H| R(q) > 0}

be the half-space model of the one dimensional quaternionic hyperbolic space which is embedded in
the quaternionic projective line P'(H) := H U {c0}. This space is isometric to the hyperbolic real

space Hg := {(t,x,y,2) € R* | t > 0} of dimension 4 with the Poincaré metric ds? = w.

Let GLo(H) be the set of all invertible matrices of My (H). A quaternionic matrix v = (Z Z) €

GLg(H) acts on P(H) by the quaternionic Mdbius transformation associated to « which is defined
as the real analytic function
E, : PY(H) — P'(H)
given by
Fy(q) := (aq+b) - (cq+d) ™", (13)



were we set I, (c0) = o0 if ¢ = 0, F,(0) = ac™! if ¢ # 0, and F,(—c"'d) = 0.
Let SLy(H) as the set of all matrices in GLo(H) with Dieudonné determinant 1 and PSLy(H) :=
SLo(H)/+Z. As we saw before the subgroup My = PSL, (H) of quaternionic Mébius transformation

leave invariant Hi; can be characterized as the group induced by matrices which satisfy one of the
following equivalent BG-conditions

{7 e PSLy(H) | 7" <(1) (1)) v = <(1) (1))} ; (14)
(Uc‘ Z) € PSLy(H) | R(az) = 0, R(bd) = 0, be + da = 1} , (15)

(1) epsta | = 0, %) =0, i+ =1} (5)



Now consider the n-fold cartesian product
HI = Hf x --- x H}

and let & the group of ”biholomorphic maps = isometries” Hyj — Hjj. The connected component
of the identity of il is equal to the n-fold direct product Mpy = MHHl-I X - X MH[{] and we have
the following exact sequence

By using coordinates qu,...,q, in Hy with ¢, = ¢, + @i + yej + z¢k, we have a metric invariant
under 4l given by:

n n

dt? + da? + dy? + dz?
2‘15%:2 ¢ $£t2 Ye %t
=1 g4

=1
From now on, we will study discrete subgroups of Mpyz. Let K be a totally real field of degree n
and oy : K — R, £ =1,...,n, denotes the n different embeddings of K in R. Let

PSLy%(Bk) := PSLy(Bk) U My,



which acts on Hy by

F—y(ql, ey qn) = (Fgl(,y), e ’F(fn(“/))
= ((Ul(a)ql + Jl(b)> : (Ul(c)ql + Ul(d))_1> [ (Ul(a)qn + Un(b)) ’ (Un<c)qn + Un(d))_l)a
b

d
of Bx. Interesting discrete subgroups of My are the following:

where v = > e PSLE®(Bk). Then we can consider PSLE® (Bx) < M. Let O be a Zg-order

e The O-quaternionic modular group I'(O) = (U (O),U(0), Tso, I),
e the O-affine subgroup A(0Q) = U.(O),U*(0), Tso) and
e the subgroup A(O) = U.(0), Tso).

Conjecture 5.1. The (finite) volume of the orbifold Mpoy = Hy/T'(O) should be related with



certain value of the zeta function

1
Cols) = ), N)r

1cO

of O € Bk, similarly to the classical case (See [11, §26.5] for special values of Co and [11, §26.8]
for its functional equation,).

CLASSICAL CASE:
J‘ w = QCK(—l)
Mr (o)

where w is the Gauss-Bonnet form




Remark 6. Note that in the classical case we write (i because Zg is the unique maximal order.
However in the quaternionic case (o depends on the choice of the (maximal) order O in Bg.

Hypothesis 5.2 (Hirzebruch). We assume that T is a discrete subgroup of Muy and that My :=
H} /T has finite volume.

We will say that I is irreducible if it contains no elements v = (y1,- - ,75) such that v, = 1 for
some £ and g # 1 for some ¢'.

An element of My is parabolic if has exactly one fixed point in P!H. This belongs to PTH? :=
H U o0 jwhy? Then an element v = (y1,--- ,7,) € Muz is called parabolic if all ~; are parabolic,
and this element has exactly one fixed point in P'H which belongs to P'HC. So, the parabolic points
of ' are the fixed points of the parabolic elements of I". Finally, the orbits of parabolic points under
the action of I' on Mgy are called cusps. When I' is irreducible there are only finitely many cusps.

Proposition 5.3. T'(0) is irreducible, or at least T' = (U.(O), Tso,I) (or T =T(0)\U(O)).



From now on we will assume that T is irreducible. If p € P'H? is a parabolic point of T', we
transform it to o0 by an element § of Mpz not necessarily belonging to I' . Then dp = oo.
Let T, := {y € I': yp = p} be the isotropy group of p. Then any element of 6T',6 ! is contained
in A(O). If
ST,6 1 < A0O)

we have a natural homomorphism
@ 0Tp0 " — Ai={(tr, - tn) eRZy: [ Jte = 1} = R".
=1

whose image is a discrete subgroup A, of rank n — 1 (in our case A, =~ Zj =~ Z"'). The kernel
of ¢ consist of all translations of the form

ker(¢)={(<(1) bll),...((l) b1n>)e7§o}



Then it is isomorphic to a certain discrete subgroup 71}, of R3" of rank 3n. In our case T), =~ SO =~ 73",
So, we have the exact sequence

0—>Tp—>(51ﬂp571—>/\p—>0

For any positive number d, the group 6T,6 ! acts freely on

W= {quﬁ:ﬁ%(qg)Zd}

=1

The orbit space W /6T',6~1 is a (non-compact) manifold with compact boundary N = oW /6T ,6 1.
Since 0W is a principal homogeneous space for the semi-direct product £ = R3" x A of all transfor-
mations qp — tyqe + by with t € A and b e R®" =~ (H°)" we can consider N as the quotient space of
the group F (homeomorphic to R*"~1) by the discrete subgroup 6,6~ .

The (4n — 1)-dimensional manifold is a torus bundle over the (n — 1)-dimensional torus A/A,.



The fibre is the torus R3"/T},, and N is obtained by the action of A, on R3" /T, which is induced by
the action of 6T',6~! on R3" . The we have the following result

Proposition 5.4. The cusp cross-section of H{/A(O) is an (3n,n—1)-torus bundle. Consequently,
the cusp cross-section of My is a virtual (3n,n — 1)-torus bundle.
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