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1. Outline

The main aim of this work in progress is to study Möbius transformations in PSLp2,Oq i.e., trans-
formations of the form

fpqq “ paq` bqpcq` dq´1

where q belongs to a quaternion K-algebra B of a number field K , a, b, c, d P O where O is an order
in the ring of integers of K. number field. We try to generalize in this setting the classical modular
groups, Hilbert-Blumenthal and Bianchi groups and the geometric properties of their actions on 4
and 5 dimensional hyperbolic spaces and products of these spaces.

1) Juan Pablo Dı́az, Alberto Verjovsky, and Fabio Vlacci. Quaternionic Kleinian modu-
lar groups and arithmetic hyperbolic orbifolds over the quaternions. Geom. Dedicata,
192:127–155, 2018.
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2. Quaternion algebras

2.1 - General definitions

Let K be a field of characteristic 0. We will say that a K-algebra B is a quaternion algebra over K,
if there exist i, j P B such that t1, i, j, iju is a K-basis for B and

i2 “ a, j2 “ b and ij “ ´ji “ k, pso that k2 “ ´abq

for some a, b P Kˆ. The quaternion algebra B is usually denoted by
´

a,b
K

¯

or by pa, b | Kq.

In particular, when K “ R and a “ b “ ´1 (then i “
?
´1 “ i, j “

?
´1 “ j and ij “ ij “ k),

the quaternion algebra p´1,´1 | Rq is the classical algebra of Hamilton’s quaternions which is usually
denoted by H.

More generally, if B “ pa, b | Rq is a quaternion algebra over R, then B » M2pRq or B » H
(this last case occurs if and only if a, b ă 0). On the other hand, when K “ C we have that
B “ pa, b | Cq » M2pCq for all a, b P Cˆ.



Figure 1. Schematic picture of the chimney which is the fundamental domain of the parabolic
group T=HpZq (generated by the translations τi, τj and τk), the polytope P and the polytope P and
its inversion T pPq. The horizontal plane represents the purely imaginary quaternions that forms
the ideal boundary BH1

H » S3 and above it the open half-space of quaternions with positive real
part H1

H. In the same fashion the ideal boundary of hyperbolic 5-space BH5
R » S4



Inspired by the complex conjugation we can define a standard involution on B given by the map

: B ÝÑ B

q “ t` xi` yj` zij ÞÝÑ q “ t´ xi´ yj´ zij.

The existence of such involution allows us to define a reduced trace trd : B Ñ K by trdpqq :“ q` q

and a reduced norm nrd : B Ñ K by nrdpqq :“ qq. Then, we can define <pqq :“ trdpqq
2 and

|q| :“ nrdpqq. We remark that the reduced trace is K-linear and the reduced norm is multiplicative
on Bˆ.



Of particular interest to us will be the K-subspace of pure elements of B defined as

B0 :“ tq P B | trdpqq “ 0u

and the normal subgroup
B1 :“ tq P Bˆ | nrdpqq “ 1u

of Bˆ of elements of reduced norm 1. When B » H, we have that H0 » R3 is the subspace of
classical pure Hamiltonians and H1 is the classical subgroup of unit Hamiltonians.

Remark 1. As a set, the unit Hamiltonians are naturally identified with the 3-sphere S3 in R4. The
group H1 acts by rotation on H0 » R3 (on the left) via conjugation ω ÞÑ qωq´1. This action defines
a group homomorphism H1 Ñ SOp3q, fitting into the following exact sequence

1 ÝÑ t˘1u ÝÑ H1 ÝÑ SOp3q ÝÑ 1.

The interpretation of the quotient group H1{t˘1u as the group of rotations of R3 is very useful to
determine certain algebraic substructures in H1.



For example, from the classification of finite groups of SOp3q we have that each finite subgroup
of H1, is isomorphic to one of the following groups:

i. a cyclic group Cn of order n generated by sn “ cosp2π{nq ` i sinp2π{nq;

ii. a binary dihedral (dicyclic) group Q4n of order 4n generated by s2n and j;

iii. the binary tetrahedral group 2T of order 24 with presentation given by

xr, s, t | r2 “ s3 “ t3 “ rst “ 1y

where r “ i, s “ 1
2 p1` i` j ` kq and t “ 1

2 p1` i` j ´ kq;

iv. the binary octahedral group 2O of order 48 with presentation given by

xr, s, t | r2 “ s3 “ t4 “ rst “ 1y

where r “ 1?
2
pi` jq, s “ 1

2 p1` i` j ` kq and t “ 1?
2
p1` iq; or



v. the binary icosahedral group 2I of order 120 with presentation given by

xs, t | pstq2 “ s3 “ t5 “ rst “ 1y

where s “ 1
2 p1` i` j ` kq, t “

1
2 pϕ` ϕ

´1i` jq and ϕ “ 1`
?

5
2 is the golden ratio.

[Marie-France Vignéras. Arithmétique des algèbres de quaternions, volume 800 of Lect. Notes
Math. Springer, Cham, 1980.]

2.2 - Quaternion orders over quadratic fields

Let K “ Qp
?
nq be a quadratic field, for some square-free n P N, and denote by σ the non-trivial

element of GalpK{Qq, which acts on α`β
?
n P K as σpα`β

?
nq “ α´β

?
n. Let ZK “ Zrθs :“ Z‘Zθ

be the ring of integers of K, where

θ “

#?
n if n ı 1 mod 4

1`
?
n

2 if n ” 1 mod 4
.



Given a place ν of K, we denote by Kν the completion of K at ν, which is isomorphic to R or
C (at the archimedean places) or to a finite extension of Qp (at the non-archimedean places). We
say that a quaternion algebra B over K is totally definite if for all real archimedian places ν of K,
Bν :“ BbQKν » H. We remark that, when ν is a complex place, we have that Bν “ BbQC » M2pCq.
Therefore, if B is a totally definite quaternion algebra over K, then K is necessarily a real quadratic
field. In particular, we will denote by BK the totally definite quaternion algebra p´1,´1 | Kq defined
over the real quadratic field K.

Definition 2.1. A ZK-order O, in a quaternion algebra B over K, is a 4-dimensional ZK-lattice
in B that is also a ring with unity. Moreover, O is called maximal if no other ZK-order properly
contains it.

Remark 2. Maximal ZK-orders are analogous to rings of integers of number fields but an important
difference is that rings of integers are unique, while a quaternion algebra can have many maximal
ZK-orders. For example, if O Ď B is a maximal ZK-order and q P Bˆ, then qOq´1 Ď B is a
maximal ZK-order, but as B is noncommutative, we may have qOq´1 ‰ O.



Example 1. Let a, b P ZKzt0u and B “ pa, b | Kq. The most natural example of a ZK-order is the
standard order in B

OB :“ ZK ‘ ZK i‘ ZKj‘ ZK ij.

In particular, when B “ BK (the totally definite quaternion algebra p´1,´1 | Kq defined over the
real quadratic field K) , HpZKq :“ OBK

“ ZK ‘ ZKi ‘ ZKj ‘ ZKk is properly contained in the
quaternion ZK-order

HurpZKq :“ ZK ‘ ZKi‘ ZKj ‘ ZKξ,

where ξ “ 1`i`j`k
2 , showing that HpZKq is never a maximal ZK-order in BK . These orders generalize

the rings of Lipschiz and Hurwitz integers HpZq and HurpZq studied in

Juan Pablo Dı́az, Alberto Verjovsky, and Fabio Vlacci. Quaternionic Kleinian modular
groups and arithmetic hyperbolic orbifolds over the quaternions.Geom. Dedicata, 192:127–
155, 2018.



However, in contrast to the maximality of HurpZq in p´1,´1 | Qq, HurpZKq is not always
maximal in BK .

For example, if K “ Qp
?

2q we can define the binary octahedral order of BQp
?

2q as

OO :“ Zr
?

2s ‘ Zr
?

2sη ‘ Zr
?

2sδ ‘ Zr
?

2sηδ,

where η “ 1`i?
2

and δ “ 1`j
?

2
, which properly contains HurpZr

?
2sq.

Similarly, when K “ Qp
?

5q, we can define the binary icosahedral order of BQp
?

5q as

OI :“ Zrϕs ‘ Zrϕsi‘ Zrϕsζ ‘ Zrϕsiζ,

where ϕ is the golden ratio and ζ “ ϕ`ϕ´1i`j
2 , which properly contains HurpZrϕsq. In fact, OO and

OI are maximal ZK-orders of BQp
?

2q and BQp
?

5q respectively.



2.3 - Unit groups of quaternion orders

In number theory a very important subgroup of ZK is the unit group ZˆK . When K is a real quadratic
field, by Dirichlet’s unit theorem, we have that

ZˆK “ t˘ε
` : ` P Zu, (1)

where ε is the fundamental unit of ZK normalized so that ε ą 1 for the canonical embedding K ãÑ R.
A description of the unit group Oˆ of a ZK-order O in an arbitrary quaternion algebra is more

complicated. However, as we are only interested in ZK-orders in a totally definite quaternion algebras
B over K, we can describe Oˆ in terms of ZˆK and the torsion group O1 :“ tu P Oˆ : nrdpuq “ 1u
(which is a finite subgroup of Oˆ of O as follows:



Let Kˆ` :“ tw P Kˆ : w ą 0 and σpwq ą 0u be the group of totally positive elements of Kˆ and
ZˆK` :“ ZˆKXK

ˆ
` be the group of totally positive units in ZK . As nrdpOq Ď ZK and nrdpBˆq Ď Kˆ`

, we have that nrdpOˆq Ď ZˆK`. Then, the reduced norm induces the following exact sequence

1 ÝÑ O1 ÝÑ Oˆ nrd
ÝÝÑ ZˆK`

which implies that O1 is a normal subgroup of Oˆ. On the other hand, as ZpBˆq “ Kˆ, we have
that ZˆK Ď ZpOˆq, which implies that ZˆK is a normal subgroup of Oˆ. Thus, ZˆKO1 is a normal
subgroup of Oˆ and, as nrdpZˆKO1q “ Zˆ2

K , we have the following embedding

Oˆ{ZˆKO1 ãÑ ZˆK`{Z
ˆ2
K .

Since K is a real quadratic field, it is well known that Zˆ2
K “ xε2y and

ZˆK` “

#

xεy if NK{Qpεq “ 1

xε2y if NK{Qpεq “ ´1.



Then, if NK{Qpεq “ ´1, we conclude that Oˆ » ZˆKO1 and if NK{Qpεq “ 1, we conclude that Oˆ is

isomorphic to ZˆKO1 or to a degree two extension of ZˆKO1. Finally, as K is a totally real field, the
finite subgroup O1 is embedded in H1 » S3. Then, we can obtain an explicit description of O1 (and
then of Oˆ) by using Dirichlet’s unit theorem (1) and Remark 1. The binary octahedral group and
binary icosahedral group appear only when K “ Qp

?
2q and K “ Qp

?
5q, respectively.



2.4 - Linear groups with coefficients in a quaternion order

Let M2pHq be the H-vector space (right or left, according to the setting) of 2ˆ 2 matrices with
entries in H. It can be proven that, all right-invertible matrices in M2pHq are also left-invertible [2,
Proposition 2.3]. Then, we can define the general linear group GL2pHq as the set of all invertible
matrices of M2pHq.

Recall that the Dieudonné determinant of a matrix γ “

ˆ

a b
c d

˙

P M2pHq is defined as the non

negative real number

detHpγq :“

b

|a|2|d|2 ` |c|2|b|2 ´ 2<pcabdq.

It can be proven that a matrix γ P M2pHq is invertible if and only if detHpγq ‰ 0. Then, GL2pHq is
precisely the set of all matrices in M2pHq having non zero Dieudonné determinant and we can define
the special linear group SL2pHq as the set of all matrices in GL2pHq with Dieudonné determinant 1.



Let K “ Qp
?
nq be a real quadratic field, which can be embedded in R. Then, since the

quaternion algebra BK is totally definite, it can be embedded in H and, by restriction, we can
embed any quaternion ZK-order O of BK in H. Let SL2pOq be the subset of all matrices in SL2pHq
with coefficients in O and PSL2pOq :“ SL2pOq{t˘Iu, where I denotes the identity matrix of size 2.
It can be shown that SL2pOq is a group and therefore PSL2pOq is also a group.

Lemma 2.1. SL2pOq is a subgroup of SL2pHq.

Proof. It is clear that the right product of matrices in SL2pOq is well defined, associative and
I P SL2pOq because O is a ring with unity. Then, we only need to prove that the right-inverse of

each γ “

ˆ

a b
c d

˙

P SL2pOq lies in SL2pOq.

First assume that abcd ‰ 0, then one can show that,

γ´1 “

ˆ

pa´ bd´1cq´1 pc´ db´1aq´1

pb´ ac´1dq´1 pd´ ca´1bq´1

˙



with a´1, b´1, c´1, d´1 not necessarily in O. Using the multiplicativity of the norm one proves that

|a|2|d´ ca´1b|2 “ |b|2|c´ db´1a|2 “

|c|2|b´ ac´1d|2 “ |d|2|a´ bd´1c|2 “ |a|2|d|2 ` |c|2|b|2 ´ 2<pcabdq “ 1.

Then, as q´1 “
q
|q|2 and q´1 “

q
|q|2 ,

γ´1 “

ˆ

pa´ bd´1cq´1 pc´ db´1aq´1

pb´ ac´1dq´1 pd´ ca´1bq´1

˙

“

¨

˝

pa´bd
´1
cq

|a´bd´1c|2
pc´db

´1
aq

|c´db´1a|2

pb´ac´1dq
|b´ac´1d|2

pd´ca´1bq
|d´ca´1b|2

˛

‚“

¨

˝

|d|2

|d|2
pa´bd

´1
cq

|a´bd´1c|2
|b|2

|b|2
pc´db

´1
aq

|c´db´1a|2

|c|2

|c|2
pb´ac´1dq
|b´ac´1d|2

|a|2

|a|2
pd´ca´1bq
|d´ca´1b|2

˛

‚

“

˜

|d|2pa´ bd
´1
cq |b|2pc´ db

´1
aq

|c|2pb´ ac´1dq |a|2pd´ ca´1bq

¸

“



˜

|d|2pa´ b d
|d|2 cq |b|2pc´ d b

|b|2 aq

|c|2pb´ a c
|c|2 dq |a|2pd´ c a

|a|2 bq

¸

“

ˆ

|d|2a´ bdc |b|2c´ dba

|c|2b´ acd |a|2d´ cab

˙

with all its coefficients in O.
Now assume that one of the entries of γ is 0. For example, if a “ 0 and bc ‰ 0 it follows that

γ´1 “

ˆ

´c´1db´1 c´1

b´1 0

˙

with b´1 and c´1 not necessarily in O. Then, as the Dieudonné determinant is equal to 1, we have
that |c|2|b|2 “ 1 and

γ´1 “

ˆ

´c´1db´1 c´1

b´1 0

˙

“



˜

´ c
|c|2 d

b
|b|2

c
|c|2

b
|b|2 0

¸

“

˜

´ 1
|c|2|b|2 cdb

c
|c|2

|b|2

|b|2

|c|2

|c|2
b
|b|2 0

¸

“

ˆ

´cdb |b|2c

|c|2b 0

˙

with all its coefficients in O. The other cases are analogous.



3. Quaternionic modular groups

3.1 - Quaternionic Möbius transformations

Let γ “

ˆ

a b
c d

˙

P GL2pHq. We define the quaternionic Möbius transformation associated to γ as

the real analytic function
Fγ : HY t8u ÝÑ HY t8u “ S4

defined by
Fγpqq :“ paq` bq ¨ pcq` dq´1, (2)

were we set Fγp8q “ 8 if c “ 0, Fγp8q “ ac´1 if c ‰ 0, and Fγp´c
´1dq “ 8.

The Möbius transformation associated to γ is an orientation-preserving conformal diffeomorphism
of the 4-sphere with its standard metric.



Two elements γ1 and γ2 determine the same Möbius transformation if and only it there exists
t ą 0 so that γ1 “ tIγ2 where I P GL2pHq is the identity matrix. therefore,

Conf`pS4q “ GL2pHq{ttI, t ą 0u
def
“ PSLp2,Hq.

where Conf`pS4q denotes the group of conformal diffeomorphisms of the round 4-sphere. By
Poincaré’s extension theorem, any conformal diffeomorphism f : S4 Ñ S4 extends to an isome-
try f̃ : B5 Ñ B5 Of the interior of the closed 5-ball B5 Ă R5 where the metric on the open 5-ball is
the Poincaré hyperbolic metric.

ds2 “
4pdx2

1 ` ¨ ¨ ¨ ` dx
2
5q

p1´ px2
1 ` ¨ ¨ ¨ ` x

2
5qq

2

Terefore PSLp2,Hq “ Isom`pB5q “ Isom`pH
5
Rq



Let b, c P H, c ‰ 0. We define the left homothetic transformation hc : HÑ H as the map q ÞÑ cq,
the translation Tb : HÑ H as the map q ÞÑ q` b, and the inversion I as the map q ÞÑ q´1 “

q
|q|2 .

As in the complex case, every quaternionic Möbius transformation is a composition of homoth-
eties, translations and inversions. More precisely Fγpqq can be decomposed as follows:

q
Tc´1d
ÝÝÝÝÑ pq` c´1dq

hc
ÝÑ cq` d

I
ÝÑ

pcq` dq´1
hb´ac´1d
ÝÝÝÝÝÝÑ pb´ ac´1dqpcq` dq´1 Tac´1

ÝÝÝÝÑ pb´ ac´1dqpcq` dq´1 ` ac´1

“ pb´ ac´1dqpcq` dq´1 ` ac´1pcq` dqpcq` dq´1 “ paq` bqpcq` dq´1.

Therefore
Fγ “ Tac´1 ˝ hb´ac´1d ˝ I ˝ hc ˝ Tc´1d. (3)

On the other hand, we define the half-space model of the one dimensional quaternionic hyperbolic
space as

H1
H :“ tq P H | <pqq ą 0u Ď H.



This space is isometric to the hyperbolic real space H4
R :“ tpt, x, y, zq P R4 | t ą 0u of dimension 4

with the Poincaré metric

ds2 “
dt2 ` dx2 ` dy2 ` dz2

t2
.

Let MH1
H
Ď PSL2pHq be the subgroup of quaternionic Möbius transformation leave invariant

H1
H. It can be prove that any Fγ PMH1

H
is conformal and preserves orientation, moreover it is an

isometry of H1
H. Then, MH1

H
is isomorphic to the groups Conf`pH

1
Hq and Isom`pH

1
Hq of conformal

diffeomorphisms and isometries orientation-preserving of the half-space model H1
H.

Moreover, MH1
H

acts by orientation-preserving conformal transformations on the sphere at infin-

ity of the hyperbolic 4-space defined as BH1
H :“ tq P H | <pqq “ 0uYt8u. Then MH1

H
– Conf`pS3q.



The subgroup MH1
H
Ď PSL2pHq can be characterized as the group induced by matrices which

satisfy one of the following equivalent BG-conditions (Bisi-Gentili), introduced by Bisi and Gentili
(which, in turn, are a variation of the conditions described by Ahlfors):

"

γ P PSL2pHq | γJ
ˆ

0 1
1 0

˙

γ “

ˆ

0 1
1 0

˙*

, (4)

"ˆ

a b
c d

˙

P PSL2pHq | <pacq “ 0, <pbdq “ 0, bc` da “ 1

*

, (5)

"ˆ

a b
c d

˙

P PSL2pHq | <pcdq “ 0, <pabq “ 0, ad` bc “ 1

*

. (6)



An important subgroup of MH1
H

is the affine subgroup ApHq consisting of transformations which

are induced by matrices of the form

ˆ

λa b
0 λ´1a

˙

with |a| “ 1, λ ą 0 and <pbaq “ 0 (which clearly

satisfy BG-conditions). The group ApHq is the maximal subgroup of MH1
H

which fixes the point at

infinity and any Fγ P ApHq acts as a conformal transformation on BH1
H. Moreover ApHq is the group

of conformal and orientation preserving transformations acting on the space of pure quaternions at
infinity which can be identified with R3 so that ApHq – Conf`pR3q.



A useful decomposition of the elements of MH1
H

is the Iwasawa decomposition which states that
every γ PMH1

H
can be written in the form

γ “

ˆ

λ 0
0 λ´1

˙ˆ

1 ω
0 1

˙ˆ

α β
β α

˙

(7)

where λ P R`, ω P H0, and α, β P H satisfy |α|2 ` |β|2 “ 1 and <pαβq “ 0. The first matrix is
a homothety fixing 0 and 8, the second matrix is a parabolic translation fixing 8 in the direction
of ω and the third matrix is a 4-dimensional rotation. In fact, the set of all matrices of the form
ˆ

α β
β α

˙

, is isomorphic to the special orthogonal group SOp4q which is a real compact Lie groups of

dimension 6. Then, we can deduce that the set of matrices of PSL2pHq satisfying the BG-condition
has real dimension 10.



3.2 - The Bianchi quaternionic modular group

If O an order of p´1,´1 | Qq let PSL2pOq Ă PSL2pHq denote the subgroup

PSL2pOq “
"ˆ

a b
c d

˙

P PSL2pHq | a, b, c, d P O
*

.

Let γ “

ˆ

a b
c d

˙

P PSLp2,Hq, then its Poincaré extension is given explicitly in the upper

half-space model H5
R :“ Hˆ Rą0 as follows:

γpq, tq “

ˆˆ

1

|cq` d|2 ` |c|2t2

˙

ppaq` bqpqc` dq ` act2q,
detHpγqt

|cq` d|2 ` |c|2t2

˙

.

Since PSL2pOq is a discrete subgroup of PSL2pHq it follows from standard facts about Kleinan
groups that PSL2pOq acts properly and discontinuously on hyperbolic 5-space H5

R.



3.3 - The Hilbert-Blumenthal quaternionic modular group

Let K “ Qp
?
nq be a real quadratic field, ZK its ring of integers and O be a quaternion ZK-order

in the totally definite quaternion algebra BK . It is well known that the embedding ZK ãÑ R is not
discrete, then (contrary to the previous case) we cannot discreetly embed O into H, and consequently
PSL2pOq is not a discrete subgroup of PSL2pHq. However, ZK admits a discrete embedding

ZK ãÑ Rˆ R,

via the Galois twist w “ α ` β
?
n ÞÑ pw, σpwqq “ pα ` β

?
n, α ´ β

?
nq, which induce a discrete

embedding
O ãÑ HˆH, (8)

given by q ÞÑ pq, σpqqq “
`

t` xi` yj ` zk, σptq ` σpxqi` σpyqj ` σpzqk
˘

, and finally (8) extend to
a discrete embedding

PSL2pOq ãÑ PSL2pHq ˆ PSL2pHq. (9)

Then, we can identify the elements of PSL2pOq with their image under (9).



Remark 3. We remark that the embedding (8) is more natural from the point of view of Minkowski’s
geometry of numbers in the sense that as BK is a totally definite quaternion algebra over a quadratic
real field then BK bQ R – HˆH.

Let H2
H :“ H1

H ˆH1
H Ď H ˆ H which is isometric to H4

R ˆH4
R with the Riemannian product

metric of Poincaré metrics. As expected, PSL2pHqˆPSL2pHq acts on HˆH by quaternionic Möbius
transformations pγ1, γ2q ¨ pq1,q2q “ pFγ1pq1q, Fγ2pq2qq but not all pγ1, γ2q P PSL2pHq ˆ PSL2pHq
leaves invariant H2

H. As in the 1-dimensional case §3.1, the set MH2
H
Ď PSL2pHq ˆ PSL2pHq of

couples pγ1, γ2q of matrices that leaves invariant H2
H is isomorphic to Conf`pH

2
Hq and Isom`pH

2
Hq,

and it can be characterized as the set of pγ1, γ2q P PSL2pHq ˆ PSL2pHq such that both γ1 and
γ2 satisfy the BG-conditions. Moreover, MH2

H
acts on the boundary BH2

H – S3 ˆ S3 of H2
H and

MH2
H
– Conf`pS3 ˆ S3q.



Now, we are ready to describe a kind of isometries of H2
H lying in

PSLBG
2 pOq :“ PSL2pOq XMH2

H

which will be used to define our quaternionic modular group.

Definition 3.1. Let O be a quaternion ZK-order in BK and =O be the set of pure elements of BK
lying in O. We define the subgroup of =O-translations of PSLBG

2 pOq as

T=O :“

"

Tb “

ˆ

1 b
0 1

˙

P PSL2pOq | b P =O
*

.



A translation in H2
H is defined as a transformation

Tpb1,b2q :“ pFγ1 , Fγ2q : H2
H ÝÑ H2

H

associated to a couple of matrices of the form

pγ1, γ2q “

ˆˆ

1 b1
0 1

˙

,

ˆ

1 b2
0 1

˙˙

PMH2
H
,

where b1 and b2 are such that <pb1q “ 0 and <pb2q “ 0. Note that, if b P O and <pbq “ 0, then
<pσpbqq “ 0 and we can identify the group T=O with the set of translations in H2

H of the form
Tpb,σpbqq, with b P =O.



Remark 4. Note that, if O is the Lipschitz order HpZKq :“ tq “ t` xi` yj ` zk | w, x, y, z P ZKu
of BK , we have that

=HpZKq “ t
1

2
pq´ qq | q P HpZKqu “ txi` yj ` zk : x, y, z P ZKu,

in analogy with the imaginary part of a complex number. However, =O is not always equal to the
set t 1

2 pq ´ qq | q P Ou. For example, let K “ Qp
?
nq, with n ı 1 mod 4, then its ring of integers

ZK “ Zr
?
ns. Let

HurpZr
?
nsq “ tq “ t` xi` yj ` zk | t, x, y, z P Zr

?
ns or t, x, y, z P Zr

?
ns `

1

2
u

be the Hurwitz order of BQp
?
nq. It is easy to see that i`j`k

2 P t 1
2 pq ´ qq | q P Zr

?
nsu Ď B0

K , by

taking q “ 1`i`j`k
2 P Zr

?
ns, but i`j`k

2 R HurpZr
?
nsq and in particular i`j`k

2 R =HurpZr
?
nsq.



Definition 3.2. Let O be a quaternion ZK-order in BK and ε be the fundamental unit of ZK . We
define the scalar unitary subgroup of PSLBG

2 pOq as the set of matrices

UεpOq :“

"

D` :“

ˆ

ε` 0
0 ε´`

˙

P PSL2pOq | ` P N
*

.

A left bi-homothetic transformation in H2
H is defined as a transformation hpc1,c2q : H2

H Ñ H2
H

given by the map pq1,q2q ÞÑ pc1q1, c2q2q, where c1, c2 P H are such that <pc1q1q ą 0 and <pc2q2q ą

0. Note that D` P UεpOq defines the left bi-homothetic transformation hpε2`,σpεq2`q in H2
H.

Definition 3.3. Let O be a quaternion ZK-order in BK . We define the torsion unitary subgroup of
PSLBG

2 pOq as the set of matrices

U1pOq :“

"

Du :“

ˆ

u 0
0 u

˙

P PSL2pOq | u P O1

*

.



Recall from Remark 1, that H1 acts by rotation on H0 » R3 via conjugation. Then, we define
a left bi-rotation in H2

H as a transformation rpu1,u2q : H2
H Ñ H2

H given by the map pq1,q2q ÞÑ

pu1q1u
´1
1 ,u2q2u

´1
2 q, where u1,u2 P H1. Note that as O1 Ď H1 and σpuq P O1 for all u P O1, then

Du P U1pOq defines the left bi-rotation rpu,σpuqq in H2
H.

Finally the inversion in H2
H is defined as pI, Iq : H2

H Ñ H2
H, were I is the usual inversion defined

by the matrix

ˆ

0 1
1 0

˙

.

Definition 3.4. Let K be a real quadratic field, and O be a quaternion ZK-order in the quaternion
algebra BK . We define the O-quaternionic modular group ΓpOq as the group generated by UεpOq,
U1pOq, T=O and I. Moreover, we define the O-affine subgroup ApOq of ΓpOq as the group generated
by UεpOq, U1pOq and T=O (without the involution I).



Remark 5. When NK{Qpεq “ 1, Oˆ could be a degree two extension of ZˆKO1 and, in such case,

Oˆ » ZˆKO1x1` iy which follows from [9, Proposition 6] and [Table 4.3, §8][4]. However, we do not
include 1` i in Definition 3.2 or in Definition 3.3, then in Definition 3.4, because in bot cases 1` i
does not produce a matrix satisfying BG-conditions.

One can show thet ΓpOq “ PSLBG
2 pOq.

Definition 3.5. Let K be a real quadratic field, and O be a quaternion ZK-order in the quaternion
algebra BK . We define the Hilbert-Blumenthal quaternionic orbifold associated to O as

MΓpOq :“ ΓpOqzH2
H.



4. Cusps of Hilbert-Blumenthal quaternionic orbifold

In this section we give a description of the cusps of the Hilbert-Blumenthal quaternionic orbifold
MΓpOq following [5] and [7].

Recall that an `–torus bundle over an m–torus is the total space of a fiber bundle with base
manifold the m-torus Tm and fiber the `-torus T `. We call such manifolds simply p`,mq–torus
bundles. We say that M is a virtual p`,mq–torus bundle if M is finitely covered by an p`,mq–torus
bundle.

Let K be a real quadratic field, and O be a quaternion ZK-order in the quaternion algebra BK .
We define the affine Hilbert-Blumenthal quaternionic orbifold associated to O as

MApOq :“ ApOqzH2
H.

Note that in a small neighborhood of p8,8q MApOq and MΓpOq coincide. The main goal of this
section is to prove the following result:

Theorem 4.1. A cusp cross-section of MApOq is a virtual p6, 1q-torus bundle.



Proof. First, let’s find A in ZK ¸ ZˆK,` – Z2 ¸A Z assuming that K “ Qp
?
nq with n ı 1 mod 4.

Let ε “ X ` Y
?
n be the fundamental unit of ZˆK . The attaching map comes from the homotheties

that translate toward the cusp, which are given by the Möbius action of powers of the matrix
ˆ

X ` Y
?
n 0

0 pX ` Y
?
nq´1

˙

on an integer a ` b
?

2 P Zr
?
ns, where X ` Y

?
n is a fundamental

unit. Since this action is
a` b

?
n ÞÑ pX ` Y

?
nq2pa` b

?
nq “

pX2 ` nY 2qa` 2Y nb` p2Y a` pX2 ` nY 2qbq
?
n,

A “

ˆ

X2 ` nY 2 2Y n
2Y X2 ` nY 2

˙

, and we see this as an action on ZK via the identification

a` b
?
nØ

ˆ

a
b

˙

.



Now, let Γ “ =O¸ZˆK,`, the cusp cross-section subgroup of the group obtained by omitting the

rotations in O1. Then

StabΓp8q “

"ˆ

pX ` Y
?
nq` xi` yj ` zij

0 pX ` Y
?
nq´`

˙
ˇ

ˇ

ˇ

ˇ

`, x, y, z P Z
*

.

This would effect each of xi, yj, zij in the same way that a ` b
?
n was effected in the Hilbert case

above. So this gives an action ZˆK Ñ AutpZ6q implying Γ – Z6 ¸A Z with

A “

¨

˚

˚

˚

˚

˚

˚

˝

pX2 ` nY 2q 2Y n 0 0 0 0
2Y pX2 ` nY 2q 0 0 0 0
0 0 pX2 ` nY 2q 2Y n 0 0
0 0 2Y pX2 ` nY 2q 0 0
0 0 0 0 pX2 ` nY 2q 2Y n
0 0 0 0 2Y pX2 ` nY 2q

˛

‹

‹

‹

‹

‹

‹

‚

. (10)

Since this group is torsion-free, it gives a finite covering (which is a manifold) of the cusp cross-



sections of our orbifolds. We remark that, extending the analogy from the Hilbert modular varieties,
the manifold is a 7-solvmanifold.

When K “ Qp
?
nq with n ” 1 mod 4, we can obtain the matrix A by similar calculations but

we do not have a general formula through all n. We include the following examples to illustrate this
phenomenon.

Example 2. Let’s find A in ZK ¸ ZˆK,` – Z2 ¸A Z for K “ Qp
?

5q. The attaching map comes from
the homotheties that translate toward the cusp, which are given by the Möbius action of powers of

the matrix

ˆ

ε 0
0 ε´1

˙

“

˜

1`
?

5
2 0

0 ´1`
?

5
2

¸

on an integer a` bθ “ a` b
´

1`
?

5
2

¯

. Since this action is

a` bθ ÞÑ ε2pa` θbq “ ε2a` ε2θb “

ˆ

3`
?

5

2

˙

a`

ˆ

3`
?

5

2

˙

θb



“ a`

ˆ

1`
?

5

2

˙

a` θb`

ˆ

1`
?

5

2

˙

θb

“ a`

ˆ

1`
?

5

2

˙

a`

ˆ

1`
?

5

2

˙

b`

ˆ

3`
?

5

2

˙

b

“ a`

ˆ

1`
?

5

2

˙

a` b` 2

ˆ

1`
?

5

2

˙

b

“ a` b` pa` 2bq

ˆ

1`
?

5

2

˙

A “

ˆ

1 1
1 2

˙

, and we see this as an action on ZK via the identification

a` bθ Ø

ˆ

a
b

˙

.



Now, let Γ “ =O¸ZˆK,`, the cusp cross-section subgroup of the group obtained by omitting the

rotations in O1. Then

StabΓp8q “

"

¨

˚

˝

´

1`
?

5
2

¯`

xi` yj ` zij

0
´

1`
?

5
2

¯´`

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

`, x, y, z P Z
*

.

This would effect each of xi, yj, zij in the same way that a ` b
´

1`
?

5
2

¯

was effected in the Hilbert



case. So this gives an action ZˆK Ñ AutpZ6q implying Γ – Z6 ¸A Z with

A “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 0 0
1 2 0 0 0 0
0 0 1 1 0 0
0 0 1 2 0 0
0 0 0 0 1 1
0 0 0 0 1 2

˛

‹

‹

‹

‹

‹

‹

‚

.

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Example 3. Let’s find A in ZK ¸ZˆK,` – Z2¸A Z for K “ Qp
?

13q. The attaching map comes from
the homotheties that translate toward the cusp, which are given by the Möbius action of powers of

the matrix

ˆ

ε 0
0 ε´1

˙

“

˜

3`
?

13
2 0

0 ´3`
?

13
2

¸

on an integer a` bθ “ a` b
´

1`
?

13
2

¯

. Since this action



is

a` bθ ÞÑ ε2pa` θbq “ ε2a` ε2θb “

ˆ

11` 3
?

13

2

˙

a`

ˆ

11` 3
?

13

2

˙

θb

“ ap4` 3θq ` bθp4` 3θq

“ 4a` 3aθ ` 4bθ ` 3bθ2

“ 4a` 3aθ ` 4bθ ` 3b

ˆ

7`
?

13

2

˙

“ 4a` 3aθ ` 4bθ ` 3bp3` θq

“ 4a` 9b` p3a` 7bqθ

A “

ˆ

4 9
3 7

˙

, and we see this as an action on ZK via the identification

a` bθ Ø

ˆ

a
b

˙

.



Now, let Γ “ =O¸ZˆK,`, the cusp cross-section subgroup of the group obtained by omitting the

rotations in O1. Then

StabΓp8q “

"

¨

˚

˝

´

3`
?

13
2

¯`

xi` yj ` zij

0
´

3`
?

13
2

¯´`

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

`, x, y, z P Z
*

.

This would effect each of xi, yj, zij in the same way that a` b
´

1`
?

13
2

¯

was effected in the Hilbert



case. So this gives an action ZˆK Ñ AutpZ6q implying Γ – Z6 ¸A Z with

A “

¨

˚

˚

˚

˚

˚

˚

˝

4 9 0 0 0 0
3 7 0 0 0 0
0 0 4 9 0 0
0 0 3 7 0 0
0 0 0 0 4 9
0 0 0 0 3 7

˛

‹

‹

‹

‹

‹

‹

‚

.

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Example 4. Let’s find A in ZK ¸ ZˆK,` – Z2 ¸A Z for the case where K “ Qp
?

2q. The attaching
map comes from the homotheties that translate toward the cusp, which are given by the Möbius

action of powers of the matrix

ˆ

1`
?

2 0

0 ´1`
?

2

˙

on an integer a` b
?

2. Since this action is

a` b
?

2 ÞÑ p1`
?

2q2pa` b
?

2q “ 3a` 4b` p2a` 3bq
?

2,



A “

ˆ

3 4
2 3

˙

, and we see this as an action on ZK via the identification

a` b
?

2 Ø

ˆ

a
b

˙

.

Notice how only even powers of the fundamental unit correspond to Möbius actions in this way,

resembling how ZˆK,` “ Zˆp2qK .
We can also think of this as the attaching map from the inside to the outside of a thickened

torus. Thus the cusp of the Hilbert-Blumenthal surface pH2
R ˆH2

Rq{PSL2pZQp
?

2qq has fundamental

group Z2 ¸A Z. Moreover, we have an injection

Z2 ¸A Z ãÑ PSL2pZr
?

2sq :

˜

ˆ

a
b

˙

, `

¸

ÞÑ

ˆ

p1`
?

2q` a` b
?

2

0 p´1`
?

2q`

˙

. (11)

Now, let Γ “ =O¸ZˆK,`, the cusp cross-section subgroup of the group obtained by omitting the



rotations in O1. Then

StabΓp8q “

"ˆ

p1`
?

2q` xi` yj ` zij

0 p1´
?

2q`

˙ ˇ

ˇ

ˇ

ˇ

`, x, y, z P Z
*

.

This would effect each of xi, yj, zij in the same way that a ` b
?

2 was effected in the Hilbert case.
More precisel, the attaching map comes from the homotheties that translate toward the cusp, which

are given by the Möbius action of powers of the matrix

ˆ

1`
?

2 0

0 ´1`
?

2

˙

on a pure quaternion

pa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qk.

pa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qk ÞÑ p1`
?

2q2ppa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qkq

“ pp1`
?

2q2pa` b
?

2qqi` pp1`
?

2q2pc` d
?

2qqj ` pp1`
?

2q2pe` f
?

2qqk

“ pp3a` 4bq ` p2a` 3bq
?

2qi` pp3c` 4dq ` p2c` 3dq
?

2qj ` pp3e` 4fq ` p2e` 3fq
?

2qk



So this gives the matrix

A “

¨

˚

˚

˚

˚

˚

˚

˝

3 4 0 0 0 0
2 3 0 0 0 0
0 0 3 4 0 0
0 0 2 3 0 0
0 0 0 0 3 4
0 0 0 0 2 3

˛

‹

‹

‹

‹

‹

‹

‚

.

Since this group is torsion-free, it gives a manifold covering of the cusp cross-sections of our orbifolds.

Now we will study the Möbius action of powers of the matrix

ˆ

u 0
0 u

˙

on a pure quaternion

pa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qk, where u P HpZKq1 “ t˘1,˘i˘ j,˘ju.

pa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qk ÞÑ uppa` b
?

2qi` pc` d
?

2qj ` pe` f
?

2qkqu´1

“ pa` b
?

2quiu´1 ` pc` d
?

2quju´1 ` pe` f
?

2quku´1



(if u “ i with u´1 “ ´i)

“ pa` b
?

2qiip´iq ` pc` d
?

2qijp´iq ` pe` f
?

2qikp´iq

“ pa` b
?

2qi´ pc` d
?

2qj ´ pe` f
?

2qk

which gives the matrix

A “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 ´1 0 0 0
0 0 0 ´1 0 0
0 0 0 0 ´1 0
0 0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.

similarly if u “ j with u´1 “ ´j,

pa` b
?

2quiu´1 ` pc` d
?

2quju´1 ` pe` f
?

2quku´1



“ pa` b
?

2qjip´jq ` pc` d
?

2qjjp´jq ` pe` f
?

2qjkp´jq

“ ´pa` b
?

2qi` pc` d
?

2qj ´ pe` f
?

2qk

which gives the matrix

A “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 0 0
0 ´1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 ´1 0
0 0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.

In general such a matrix are in correspondence with the set of matrices of order 2

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚,

¨

˝

´1 0 0
0 ´1 0
0 0 ´1

˛

‚,

¨

˝

1 0 0
0 ´1 0
0 0 ´1

˛

‚,

¨

˝

´1 0 0
0 1 0
0 0 1

˛

‚,



¨

˝

´1 0 0
0 1 0
0 0 ´1

˛

‚,

¨

˝

1 0 0
0 ´1 0
0 0 1

˛

‚,

¨

˝

´1 0 0
0 ´1 0
0 0 1

˛

‚,

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚.

Now consider u P HurpZKq1 “ HpZKq1Y
!

˘1˘i˘j˘k
2

)

. Then we have for example, if u “ 1`i`j`k
2

and u´1 “
1´i´j´k

2

pa` b
?

2quiu´1 ` pc` d
?

2quju´1 ` pe` f
?

2quku´1

“
1

4
ppa` b

?
2qp1` i` j ` kqip1´ i´ j ´ kq`

`pc` d
?

2qp1` i` j ` kqjp1´ i´ j ´ kq ` pe` f
?

2qp1` i` j ` kqkp1´ i´ j ´ kqq

“
1

4
ppa` b

?
2qp4jq ` pc` d

?
2qp4kq ` pe` f

?
2qp4iq



“ pe` f
?

2qi` pa` b
?

2qj ` pc` d
?

2qk

which gives the matrix of order 3

A “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

.

corresponding to the matrix
¨

˝

0 0 1
1 0 0
0 1 0

˛

‚,

In general the 16 new matrix corresponds to the non diagonal (but with a diagonal minor)



matrices with coefficients ˘1
¨

˝

0 0 1
1 0 0
0 1 0

˛

‚,

¨

˝

0 1 0
0 0 ´1
´1 0 0

˛

‚, ....



4.1 - Class number of a quaternion order

Let K “ Q or a real quadratic field, ZK its ring of integers, BK “ p´1,´1 | Kq and I Ď BK be a
ZK-lattice. Then

ORpIq :“ tα P BK : Iα Ď Iu

is a ZK-order in BK called the right order of I. Similarly, we can define the left order of I by

OLpIq :“ tα P BK : αI Ď Iu.

Let I, J Ď BK be ZK-lattices. We define the product IJ , as the ZK-submodule of BK generated
by the set tαβ : α P I, β P Ju. In fact, IJ is a ZK-lattice too. We will say that a ZK-lattice I Ď BK
is invertible if there exists a lattice I 1 Ď BK such that

II 1 “ OLpIq “ ORpI
1q and I 1I “ OLpI

1q “ ORpIq.

On the other hand, we say that two ZK-lattices I, J Ď BK are in the same right class, if there
exists α P BˆK such that αI “ J , and we write I „R J . The relation „R defines an equivalence



relation on the set of ZK-lattices in BK , then we will denote by rIsR the equivalence class of the
ZK-lattice I. In particular, when I is an invertible lattice, every lattice in the class rIsR is invertible.

Now, let O be a ZK-order in BK . A right fractional O-ideal is a lattice I Ď BK such that
O Ď ORpIq. Similarly we can define a left fractional O-ideal. We define the (right) class set of O
as the set

ClsRpOq :“ trIsR : I is an invertible right fractional O-idealu.

The set ClsRpOq has a distinguished element rOsR P ClsRpOq, so it has the structure of a
pointed set. However, in general it does not have the structure of a group under multiplication. For
example, for classes rIsR, rJsR, we have that rαJsR “ rJsR for α P BˆK but we need not have that
rIαJsR “ rIJsR, because of the lack of commutativity.

We remark that the analogue left relation can be defined and the map I ÞÑ I, induced by the
standard involution in BK , interchanges left and right. Then we will abbreviate

ClspOq :“ ClsRpOq.



It can be proven, by using the analogue geometry of numbers [11, Main Theorem 17.7.1], that ClspOq
is finite and we can define the (right) class number of O as

hO :“ #ClspOq

Of particular interest to us are when O is maximal. In this case all lattices are invertible and it
can be proven that an invertible right fractional O-ideal can be generated as a right O-ideal by two
elements α, β P BˆK . The result follows from Exercise 16.6 and Main Theorem 16.7.7 of [11].

4.2 - Motivating example

Let
H

5

R :“ tpq, tq : q P H, t ě 0u.



As we pointed out above, each γ “

ˆ

a b
c d

˙

P PSLp2,Hq acts on HYt8u by Möbius transformations.

This action can be extended to H
5

R as follows (the Poincaré’s extension of Fγ):

Fγpq, tq “

ˆ

1

|cq` d|2 ` |c|2t2
ppaq` bqpqc` dq ` act2q,det

H
pγq

t

|cq` d|2 ` |c|2t2

˙

.

In particular, when t “ 0 the Poincare extension Fγ of Fγ correspond to the action of Fγ on H.
Let O be a Z-order in BQ “ p´1,´1 | Qq and consider PSL2pOq which is a discrete subgroups of

PSL2pHq. Then we can define the Bianchi quaternionic orbifold as

MO :“ H5
R{PSL2pOq.

which is a real 5-dimensional orbifolds of finite hyperbolic volume. Examples of such orbifolds are
described in the extended version of [3] when O is the ring HpZq of Lipschitz integers and the ring
HurpZq of Hurwitz integers.



Note that the embedding of BQ ãÑ H induce an embedding

P1pBq ãÑ P1pHq. (12)

The orbits of P1pBq under PSL2pOq is called the cusps of PSL2pOq.

Proposition 4.2. MHurpZq has only one cusp.

Proof. As HurpZq is a lattice of H we have that HurpZq ¨ Q “ H then each element β of H can be
write as β “ αc´1 with α P HurpZq, 0 ‰ c P Z and gcdpα, cq “ 1. By right Bézout’s theorem [11,
Corollary 11.3.6] there exists µ, ν P HurpZq such that

αµ´ cν “ 1.

This gives γ “

ˆ

α ν
c µ

˙

such that Fγp8q “ αc´1. Using Lemma 2.4 of [2] and the commutativity

of c, we have that
detHpγq “

a

|α|2|µ|2 ` |c|2|ν|2 ´ 2<pcανµq “



a

|cν ´ cαc´1µq|2 “
a

|αµ´ cνq|2 “ 1

then γ P PSL2pHurpZqq. Thus the only cusp of MHurpZq is the orbit of 8.

From [11, Proposition 11.3.4] we have that hHurpZq “ 1, then we have the following corollary.

Corollary 4.3. The number of cusps of MHurpZq is equal to hHurpZq.

The proof of Theorem 4.2 works for any (left) Euclidean order O in BQ (or even in BK for a
quadratic real field and MO :“ pH5

RˆH5
Rq{PSL2pOq. However, there are examples of non-Euclidean

orders even in BQ as follows:



On the other hand we have the following result:

Proposition 4.4. MHpZq has at least two cusps.

Proof. (Sketch) I “ 2HpZq ` p1` i` j ` kqHpZq
is not a principal ideal of HpZq. As HpZq is not a Bézout ring, it can be proven that 8 “ p1; 0q “

P1pHq and p1` i` j ` k; 2q P P1pHq are in two different orbits of PSL2pHpZqq.

As hHpZq “ 2 we have the following result.

Corollary 4.5. The number of cusps of MHpZq is ě hHpZq.



5. Hilbert quaternionic varieties (n-dimensional case)

Let
H1

H :“ tq P H | <pqq ą 0u

be the half-space model of the one dimensional quaternionic hyperbolic space which is embedded in
the quaternionic projective line P1pHq :“ H Y t8u. This space is isometric to the hyperbolic real

space H4
R :“ tpt, x, y, zq P R4 | t ą 0u of dimension 4 with the Poincaré metric ds2 “

dt2`dx2
`dy2

`dz2

t2 .

Let GL2pHq be the set of all invertible matrices of M2pHq. A quaternionic matrix γ “

ˆ

a b
c d

˙

P

GL2pHq acts on P1pHq by the quaternionic Möbius transformation associated to γ which is defined
as the real analytic function

Fγ : P1pHq ÝÑ P1pHq

given by
Fγpqq :“ paq` bq ¨ pcq` dq´1, (13)



were we set Fγp8q “ 8 if c “ 0, Fγp8q “ ac´1 if c ‰ 0, and Fγp´c
´1dq “ 8.

Let SL2pHq as the set of all matrices in GL2pHq with Dieudonné determinant 1 and PSL2pHq :“
SL2pHq{˘I. As we saw before the subgroup MH1

H
Ď PSL2pHq of quaternionic Möbius transformation

leave invariant H1
H can be characterized as the group induced by matrices which satisfy one of the

following equivalent BG-conditions

"

γ P PSL2pHq | γJ
ˆ

0 1
1 0

˙

γ “

ˆ

0 1
1 0

˙*

, (14)

"ˆ

a b
c d

˙

P PSL2pHq | <pacq “ 0, <pbdq “ 0, bc` da “ 1

*

, (15)

"ˆ

a b
c d

˙

P PSL2pHq | <pcdq “ 0, <pabq “ 0, ad` bc “ 1

*

. (16)



Now consider the n-fold cartesian product

Hn
H “ H1

H ˆ ¨ ¨ ¨ ˆH1
H

and let U the group of ”biholomorphic maps = isometries” Hn
H Ñ Hn

H. The connected component
of the identity of U is equal to the n-fold direct product MHn

H
“ MH1

H
ˆ ¨ ¨ ¨ ˆMH1

H
and we have

the following exact sequence
1 ÝÑMHn

H
ÝÑ U ÝÑ Sn ÝÑ 1.

By using coordinates q1, . . . ,qn in Hn
H with q` “ t` ` x`i ` y`j ` z`k, we have a metric invariant

under U given by:
n
ÿ

`“1

ds2
` “

n
ÿ

`“1

dt2` ` dx
2
` ` dy

2
` ` dz

2
`

t2`
.

From now on, we will study discrete subgroups of MHn
H
. Let K be a totally real field of degree n

and σ` : K ãÑ R, ` “ 1, . . . , n, denotes the n different embeddings of K in R. Let

PSLBG
2 pBKq :“ PSL2pBKq YMH1

H
,



which acts on Hn
H by

Fγpq1, . . . ,qnq :“ pFσ1pγq, . . . ,Fσnpγqq

“ ppσ1paqq1 ` σ1pbqq ¨ pσ1pcqq1 ` σ1pdqq
´1, . . . , pσ1paqqn ` σnpbqq ¨ pσnpcqqn ` σnpdqq

´1q,

where γ “

ˆ

a b
c d

˙

P PSLBG
2 pBKq. Then we can consider PSLBG

2 pBKq ĎMHn
H
. Let O be a ZK-order

of BK . Interesting discrete subgroups of MHn
H

are the following:

• The O-quaternionic modular group ΓpOq “ xUεpOq,U1pOq, T=O, Iy,

• the O-affine subgroup ApOq “ xUεpOq,U1pOq, T=Oy and

• the subgroup ∆pOq “ xUεpOq, T=Oy.

Conjecture 5.1. The (finite) volume of the orbifold MΓpOq “ Hn
H{ΓpOq should be related with



certain value of the zeta function

ζOpsq “
ÿ

IĎO

1

NpIqs

of O P BK , similarly to the classical case (See [11, §26.5] for special values of ζO and [11, §26.8]
for its functional equation).

CLASSICAL CASE:
ż

MΓpOq

ω “ 2ζKp´1q

where ω is the Gauss-Bonnet form

ω “ p´1qn
1

p2πqn
dx1 ^ dy1

y2
1

^ ¨ ¨ ¨ ^
dxn ^ dyn

y2
n



Remark 6. Note that in the classical case we write ζK because ZK is the unique maximal order.
However in the quaternionic case ζO depends on the choice of the (maximal) order O in BK .

Hypothesis 5.2 (Hirzebruch). We assume that Γ is a discrete subgroup of MHn
H

and that MΓ :“
Hn

H{Γ has finite volume.

We will say that Γ is irreducible if it contains no elements γ “ pγ1, ¨ ¨ ¨ , γnq such that γ` “ 1 for
some ` and γ`1 ‰ 1 for some `1.

An element of MH1
H

is parabolic if has exactly one fixed point in P1H. This belongs to P1H0 :“

H0 Y8 ¿why? Then an element γ “ pγ1, ¨ ¨ ¨ , γnq PMHn
H

is called parabolic if all γ` are parabolic,

and this element has exactly one fixed point in P1H which belongs to P1H0. So, the parabolic points
of Γ are the fixed points of the parabolic elements of Γ. Finally, the orbits of parabolic points under
the action of Γ on MHn

H
are called cusps. When Γ is irreducible there are only finitely many cusps.

Proposition 5.3. ΓpOq is irreducible, or at least Γ “ xUεpOq, T=O, Iy (or Γ “ ΓpOqzU1pOq).



From now on we will assume that Γ is irreducible. If p P P1H0 is a parabolic point of Γ, we
transform it to 8 by an element δ of MHn

H
not necessarily belonging to Γ . Then δp “ 8.

Let Γp :“ tγ P Γ : γp “ pu be the isotropy group of p. Then any element of δΓpδ
´1 is contained

in ApOq. If
δΓpδ

´1 Ď ∆pOq

we have a natural homomorphism

ϕ : δΓpδ
´1 ÝÑ Λ :“ tpt1, ¨ ¨ ¨ , tnq P Rną0 :

n
ź

`“1

t` “ 1u – Rn´1.

whose image is a discrete subgroup Λp of rank n ´ 1 (in our case Λp – ZˆK,` – Zn´1). The kernel
of φ consist of all translations of the form

kerpφq “

"ˆˆ

1 b1
0 1

˙

, ¨ ¨ ¨

ˆ

1 bn
0 1

˙˙

P T=O

*



Then it is isomorphic to a certain discrete subgroup Tp of R3n of rank 3n. In our case Tp – =O – Z3n.
So, we have the exact sequence

0 ÝÑ Tp ÝÑ δΓpδ
´1 ÝÑ Λp ÝÑ 0

For any positive number d, the group δΓpδ
´1 acts freely on

W :“

#

q P Hn
H :

n
ź

`“1

<pq`q ě d

+

The orbit space W {δΓpδ
´1 is a (non-compact) manifold with compact boundary N “ BW {δΓpδ

´1.
Since BW is a principal homogeneous space for the semi-direct product E “ R3n¸Λ of all transfor-
mations q` ÞÑ t`q` ` b` with t P Λ and b P R3n – pH0qn we can consider N as the quotient space of
the group E (homeomorphic to R4n´1) by the discrete subgroup δΓpδ

´1 .
The p4n ´ 1q-dimensional manifold is a torus bundle over the pn ´ 1q-dimensional torus Λ{Λp.



The fibre is the torus R3n{Tp, and N is obtained by the action of Λp on R3n{Tp which is induced by
the action of δΓpδ

´1 on R3n . The we have the following result

Proposition 5.4. The cusp cross-section of Hn
H{∆pOq is an p3n, n´1q-torus bundle. Consequently,

the cusp cross-section of MΓpOq is a virtual p3n, n´ 1q-torus bundle.
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[8] Pierre Samuel. Théorie algébrique des nombres. (Deuxième et troisième cycles). Paris: Her-
mann, 2003.
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