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Classical discriminants

The classical discriminant of a polynomial of degree < n

f(x) =ap + aix+ ...+ 31X+ ax" € Clx1, - - - xn)

is a polynomial A(f) € Z[ao, ..., an] such that A(f) = 0 if fhas a
double root.

A(ag + aix+ azx2) = 4aqay — a%

A(ag + aix+ a3 + a3x3) =

27383% + 43033 + 43%33 — a%a% — 18agajazas
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A(ag + ar1x+ a2 + azx + a4x4)

—256aoa4 192aoala3a4 — 128233333 + 144agaga§a4 - 273331
+ 14430313234 6aoala§a4 — 80a0a1a%aga4 + 1830a132a§
+ 16apasaq — 4apasas — 27aja;

+ 18a3apazas — 4asas — 4ajazay + atasas
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Discriminants a la GKZ
A-sets
® A={wv1,...,vp} is a collection of elements of the lattice
N =2 79 such that A generates N as a lattice
® There exists a group homomorphism h: N — Z such that
h(v;) = 1 for any element v; € A.
Notation:

Q :=conv(A) C R K= Z R>ovi =R>0Q C RY

1<i<n

® V4 is the Zariski closure in C” of the set of polynomials
f=> 1<icpaix’in C[xi,...,xqg] such that there exists some
y € (C*)" with the property that f= 0 is singular at y.

® The discriminant Ax € Zlay, .. ., a,) is the irreducible
polynomial (defined up to a sign) whose zero set is given by
the union of the irreducible codimension 1 components of V 4.
For the case codim V4 > 1, one sets V4 = 1.
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In the context of toric varieties, Danilov-Khovanskii, Batyrev
introduced a more general version of regularity related to the
restrictions of the Laurent polynomial fto all the non-empty faces
I" of the polytope Q.

The principal A-determinant E, is the polynomial in Z[ay, . .., ap)
defined as '
Ea = [ J(2anr) 010,
r

where the product is taken over all the non-empty faces I of the
polytope @ = conv(A).
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Let ' be a non-empty face I' of the polytope Q = conv(A).
e (M) :=[NNRI:Z(ANT)] (=0, ifANT contains a basis of
the restriction of N to the face determined by I')

® S=7>0A is the semigroup generated by A. If S/I" denotes
the image semigroup of S in the quotient free group Ng/RT,
with Mg = N ®z R. then

u(T) := vol(conv(5/T) \ conv(S/T \ {0})),
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To any A-set in the lattice N, we can associate two toric varieties
(two sides of mirror summetry).
e Y:= SpecC[KY N N"] is toric affine with Gorenstein
singularities (due to the hyperplane condition)
® Any regular triangulation of the polytope @ with vertices
among the elements of A induces a simplicial fan ¥ and the
associated DM Calabi—Yau stack Xy and a natural crepant
birational morphism 7 : Xy — Y.

Different triangulations give rise to different toric birational models
Xy for the crepant resolution of the toric affine Gorenstein
singularity Y.
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The secondary polytope

The secondary polytope S(A) is the convex hull in RA = R" of the
characteristics functions ¢y for all the simplicial fans X with

oy (v) = Z vol(o),

veVert(o)

where the summation is taken over all the maximal cones.
The principal A-determinant E and the secondary polytope S(A)
are related in a remarkable way as shown by GKZ.

Theorem
For a given set A, the Newton polytope of E5 coincides with the
secondary polytope S(A).

S(A) (or its dual secondary fan) provides a toric compactification
of the moduli stack of complex structures M cpjex(f).
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Edges and circuits

e Two simplicial fans such that the corresponding vertices in the
secondary polytope are joined by an edge F differ my a
modification along a circuit in A.

® A circuit in A 'is a minimal dependent subset {v;,i € I} with

I {1,...,N}. In particular any circuit determines a relation
of the form

Z livi + Z livi=0,

icly iel_

with /= I, U |_, where the two subsets I, := {i: [; > 0} and
I_:={i: l; < 0} are uniquely defined by the circuit up to
replacing /. by /_.
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Intuitive picture (compatible with HMS) of the moduli spaces with
a compactification given by the secondary polytope S(A) in the

toric case.
° m . )
‘b” \‘p\nu )\) _y“’ (:,\A l%\) k; hf“ (X
D m = C\r
& o » (;-ovl(?% N- J‘Z.ﬂlm ména
‘2 2 - VDG -9

DP(coh(X)) = D(coh(X') (Bondal-Orlov, Kawamata,...)
The is a proposal about

the categorical picture along the components of the discriminant.
It is reminiscent of the (®, V) “vanishing—nearby cycle”
construction in singularity theory.
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Spherical functors

The "wall monodromy” spherical functor.

Theorem

For any edge F of the secondary polytope S(A), there exists a toric
DM stack Zg and an EZ—-spherical wall-monodromy functor
Db(Zg) — DP(X) where X is the toric DM stack induced by either
one of the simplicial fans corresponding to the edge F.
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Let I' be a non-empty face of the polytope Q = conv(A) and X a
stacky fan supported on K.

The stacky fan X is induced by the canonical projection

m: N— N/Z(ANT). The one dimensional cones of this stacky fan
> r are indpendent of ¥ but the cones of the cones of the induced
fan X are not.

Theorem

® For any two choices of stacky fans X and X as above, the
bounded derived categories of coherent categories
Db(coh(Xs,)) and D*(coh(Xs1)) are equivalent.

® 1k Ko(Xx,) = u(l) - i(T).
Set DP(Zr) := DP(coh(Xs,))
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The Conjecture

Conjecture.

1) (Aspinwall-Plesser—Wang) For each face I', there exist spherical
functors D?(Zr) — DP(X) for any toric DM stack X determined by
a triangulation corresponding to a vertex of the secondary
polytope.

2) (H.—Katzarkov) For any edge F of the secondary polytope, the
category DP(ZF) admits a semiorthogonal decomposition consisting
of nr r components DP(Zr) for each face I of the polytope Q.

The first part is a direct consequence of the second: the wall
monodromy functors D?(Zg) — DP(X) are spherical, so a result of
Kuznetsov and Halpern-Leistner—Shipman implies that each
component of the semiorthogonal decomposition determines a
spherical functor.
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Theorem (H.—Katzarkov)

For any edge F of the secondary polytope S(A), the following
equality holds:

rk(Ko(D®(ZF))) = > nr.r - k(D°(Ko(Zr))),
rce

for some combinatorially defined non-negative integer multiplicities
nr.r.

The proof is based on an analysis of the (asymptotic) properties of
the A—determinant E4. Each edge F determines a circuit /, and
discriminant A,. The asymptotic expansions are expressed as
powers of A in two ways corresponding to the two sides of the
statement above about Ky dimensions.



An example

® X is the resolution of the A3 singularity, with

Vo = (17 0)7 Vi

Ep = agas Ag = aoa4(256aoa4 19230313334

+ 144aoaga3a4 — 273034 + 144aoalaga§
— 6aoa%a§a4 — Sanala%a3a4 + 18aoala2a§

+ 16agasas — 4agasas — 27aja;

+ 18a3apazay — 4asas — 4ataday + a2a3a3).
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=(1,1),v =(1,2),v3 =(1,3),va = (1,4).

® S(A) is combinatorially equivalent to a cube in R3.

128a3a3a

2
n
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Zg is the point Spec C. X = [C?/Z4] is the stacky resolution
determined by the cone (v, va).

F1 edge corresponding to the birational transformation
X <> Xi, where Xj is the toric DM stack with cones
determined by the pairs vy, v1 and vy, v4.

The associated polyhedral subdivision is

(conv{vo, va},{0,1,4}), and the circuit relation /'is
3vop —4vi +v4 = 0.

Ayis 2563834 — 273‘11

The leading term with respect to the edge Fy in Ag is

2563034 - 273134 — 34 A[
The spherical functor is

D*(Spec C) — DP([C?/7Z4)).
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F> denote the edge corresponding to the birational
transformation X <+ X5, where X5 is the toric DM stack with
cones determined by the pairs vy, vo and o, v4.

The circuit relation /'is vg — 2v» + v4 = 0. The discriminant
Ayis dagas — a%.

The the leading term with respect to the edge F» in the
quartic discriminant Ag is

2563835’L — 128a2a3a3 + 16agasas = 16apay - AZ.
nQ,F, = 2 and the spherical functor is

DP([Spec C/Z,]) — D°([C?/Z4)).
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Another example
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£ (27/\‘) ((}1:%&"’) L Blow wp '
! ]
< Su
@1%%2:%‘5] (3 :E)fc{’ )y
_ C\‘\‘:‘_‘u\, DUy e
o ) = (E) mere it

L 15 Aaonfliecss
[6?/_“& ~ tw (v f.(i‘;’ )K

Remarks
[e]e]



Examples
0000000



Discriminants Combinatorics of A—sets and birational toric geometry Categorical statements
00000 0000 00000

v

Ly 16
K [ (¥ et )|

4y = 001) = - N
c(; \> 14) \p‘v :
J4 = 01

3;— K-\‘l\) SX, %ﬂ\_’ \:" LS

A \; \i ? %

Vy —2p Wy =

|5 &1\} = (‘if”)

Examples
00000800

Remarks
[e]e]



Discriminants Combinatorics of A—sets and birational toric geometry Categorical statements Examples
00000 0000 00000 00000080

\Io= (ani) V &~ - 2
‘)1 = (“") QA \k

V 1
Jy = (0N
3;: (—\2\) SX, 'X d—? ‘;4

g B ¥>
tz\;o Wy el

\J\ ’leb =0

P ( Ilu 44>
S a{geuln-/
q= 24t N
a2, Ve
g az / H"\

Remarks
[e]e]



Discriminants Combinatorics of A—sets and birational toric geometry Categorical statements Examples Remarks
00000 0000 00000 O000000e [e]e]

Wall monodromies around the component y = 1/4

x = k — —constant, k very small.
E=A'xPL—= X
|
Z=A!
x = k — —constant, k very large.
E=[AY)Z)] x P! = X3 = [C3/Z4]

q
|

Z=[AY/Z,]
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Questions and Remarks

Is there an analogous story for higher dimensional faces of the
secondary polytope S(A)?

The conjectured semi-orthogonal decompositions encode the
braid monodromy associated to the complement of the
discriminant locus (Aspinwall-Horja-Karp). Braid monodromy
categorification.

Wall—crossing phenomena along the components of the
discriminant locus; Riemann—Hilbert correspondence

What is the associated schober?
Is there a Landau—Ginzburg version?

Relation to Bridgeland’s stability conditions and the theory of
limiting stability conditions (Katzarkov)
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Thank you for your attention!
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