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Equivariant birational geometry

Main problem: study G-actions, modulo equivariant birational
transformations, in particular, embeddings of G into the Cremona
group

Crn = BirAut(Pn).

k – ground field, of characteristic 0 and algebraically closed

G – finite group

X – smooth projective G-variety, (mostly) rational over k, i.e.,
birational to Pn

XG – fixed point locus
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Basic facts

If X is rational and G is cyclic, then XG 6= ∅.
If X 99K Y is a G-equivariant birational map between smooth
projective G-varieties, and G is abelian, then

XG 6= ∅ ⇔ Y G 6= ∅.

If X and Y are smooth projective G-equivariantly (stably)
birational algebraic varieties then

H1(G′,Pic(X)) = H1(G′,Pic(Y )),

for all subgroups G′ ⊆ G (H1-triviality).
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H1(G,Pic(X))

Bogomolov-Prokhorov (2013): If G is cyclic of order p, acting
on a smooth rational surface X and fixing a curve of genus
g ≥ 1, then

H1(G,Pic(X)) = (Z/pZ)2g.

Shinder (2016): If G is cyclic, acting on a smooth rational
surface X, and such that all stabilizers are either trivial or
equal to G, then

H1(G,Pic(X)) =
⊕
C⊂XG

H1(C,Z)⊗ Z/mZ.
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Reichstein–Youssin (2002)

Let V and W be d-dimensional faithful representations of an
abelian group G of rank r ≤ d, and

χ1, . . . , χd, respectively η1, . . . , ηd,

the characters of G appearing in V , respectively W . Then V and
W are G-equivariantly birational if and only if

χ1 ∧ · · · ∧ χd = ± η1 ∧ · · · ∧ ηd

(This condition is meaningful only when r = d.)

Thus, cyclic linear actions on Pn, with n ≥ 2, of the same
order, are equivariantly birational.

Note that any two faithful representations of G are
equivariantly stably birational.
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Birational types Bn(G)

Let G be a finite abelian group, and A = G∨ its group of
characters. Consider the Z-module

Bn(G)

generated by unordered tupels [a1, . . . , an], ai ∈ A, such that

(G)
∑

i Zai = A, and

(B) for all a1, a2, b1, . . . , bn−2 ∈ A we have

[a1, a2, b1, . . . bn−2] =

[a1 − a2, a2, b1, . . . , bn−2] + [a1, a2 − a1, b1, . . . , bn−2] if a1 6= a2,

[a1, 0, b1, . . . , bn−2] if a1 = a2.
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Birational types

For G = Z/pZ and n = 2, we get
(
p
2

)
linear equations in the same

number of variables.

rkQ(B2(G)) =
p2 − 1

24
+ 1

For n ≥ 3 the systems of equations are highly overdetermined.

rkQ(B3(G))
?
=

(p− 5)(p− 7)

24
=
p2 − 1

24
+ 1− p− 1

2

Jumps at
p = 43, 59, 67, 83, ...
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Birational types

Let X be smooth projective, of dimension n, with regular G-action.
Consider XG = t Fα and record eigenvalues of G

[a1,α, . . . , an,α]

in the tangent space TxαX, at some xα ∈ Fα. Put

β(X) :=
∑
α

[a1,α, . . . , an,α]

Kontsevich-T. 2019

The class
β(X) ∈ Bn(G)

is a well-defined G-equivariant birational invariant.
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Birational types

Variant: introduce the quotient

µ− : Bn(G)→ B−n (G)

by an additional relation

[a1, a2, . . . , an] = −[−a1, a2, . . . , an].

The class of Pn, n ≥ 2, with linear action of G := Z/NZ is

torsion in Bn(G) and

trivial in B−n (G).
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Equivariant Burnside group (Kresch-T. 2020)

G is a finite group

H ⊆ G is an abelian subgroup, with character group

H∨ = Hom(H, k×)

Bird(k) is the set birational equivalence classes of function
fields of algebraic varieties of dimension d over k, we identify a
field with its class

AlgN (K0) is the set of isomorphism classes of Galois algebras
over K0 ∈ Bird(k) for the group

N := NG(H)/H,

satisfying

Assumption 1: the composition

H1(NG(H),K×)→ H1(H,K×)N → H∨

is surjective

Equivariant birational types



Equivariant Burnside group (Kresch-T. 2020)

G is a finite group

H ⊆ G is an abelian subgroup, with character group

H∨ = Hom(H, k×)

Bird(k) is the set birational equivalence classes of function
fields of algebraic varieties of dimension d over k, we identify a
field with its class

AlgN (K0) is the set of isomorphism classes of Galois algebras
over K0 ∈ Bird(k) for the group

N := NG(H)/H,

satisfying

Assumption 1: the composition

H1(NG(H),K×)→ H1(H,K×)N → H∨

is surjective

Equivariant birational types



Equivariant Burnside group

Let
Burnn(G) = Burnn,k(G)

be the Z-module, generated by symbols

(H,N ýK,β),

where

H ⊆ G is an abelian subgroup,

K ∈ AlgN (K0), with K0 ∈ Bird(k), and d ≤ n,

β = (a1, . . . , an−d), a sequence, up to order, of nonzero
elements of H∨, that generate H∨.

The sequence of characters β determines a faithful representation of
H over k of dimension (n− d) with trivial space of invariants.
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Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:

(C): (H,N ýK,β) = (H ′, N ′ ýK,β′), when H ′ = gHg−1 and
N ′ = NG(H ′)/H ′, with g ∈ G, and β and β′ are related by
conjugation by g.

(B1): (H,N ýK,β) = 0 when a1 + a2 = 0.

Equivariant birational types



Equivariant Burnside group: relations

(B2): (H,N ýK,β) = Θ1 + Θ2, where

Θ1 =

{
0, if a1 = a2,

(H,N ýK,β1) + (H,N ýK,β2), otherwise,

with

β1 := (a1, a2 − a1, a3, . . . , an−d), β2 := (a1 − a2, a2, a3, . . . , an−d),

and

Θ2 =

{
0, if ai ∈ 〈a1 − a2〉 for some i,

(H,N ýK, β̄), otherwise,

with

H
∨

:= H∨/〈a1 − a2〉, β̄ := (ā2, ā3, . . . , ān−d), āi ∈ H
∨
.
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Equivariant Burnside group: relations

Model case: Blowing up an isolated point (with abelian
stabilizer) on a surface.

It will explain the action of N on K.
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Equivariant Burnside group

The class
[X ý G] ∈ Burnn(G)

of a G-variety is computed on a standard model X:

X is smooth projective,

there exists a Zariski open U ⊂ X such that G acts freely on U ,

the complement X \ U is a normal crossings divisor,

for every g ∈ G and every irreducible component D of X \ U ,
either g(D) = D or g(D) ∩D = ∅.

Equivariant birational types



Equivariant Burnside group

Passing to a standard model X, define:

[X ý G] :=
∑
H

∑
F

(H,N ýk(F ), βF (X)) ∈ Burnn(G),

where the sum is over (conjugacy classes of) abelian subgroups
H ⊆ G, all all F ⊂ X with generic stabilizer H.

The symbols record the generic eigenvalues of H in the normal
bundle along F , as well as the N = NG(H)/H-action on the
function field of F , respectively the orbit of F .

Note that, on a standard model, all stabilizers are abelian, and all
symbols satisfy Assumption 1.
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Equivariant Burnside group

Kresch-T. 2020

The class
[X ý G] ∈ Burnn(G)

is a well-defined G-equivariant birational invariant.
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Equivariant Burnside group: properties

Let Burnn(G)→ BurnGn (G) be the quotient by the subgroup
generated by all symbols with H ( G. Then

BurnGn (G)� Bn(G).

For n = 2 and G cyclic, we recover Blanc’s theory of
normalized fixed curves with action (NFCA).

For n = 2 and G cyclic of prime order, [X ý G] encodes

H1(G,Pic(X)).
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Abelian actions on surfaces

If there is no curve of genus ≥ 1 in the fixed locus XG, then all
actions are linear, with the exception of one fixed-point free
action of Z/2Z× Z/4Z.

When there is a curve of genus ≥ 1 in XG, it will appear on
every equivariantly birational model.

In particular, B2(G) does not give anything new in dimension 2.

However, it enters as coefficient group in higher dimensions and can
contribute nontrivially to Burnn(G).
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Nonabelian actions on surfaces

Consider the action of G = C2 ×S3 = W (G2) on the corresponding
torus T and its Lie algebra t.

These are stably equivariantly birational
(Lemire-Popov-Reichstein 2005)

They are not equivariantly birational (Iskovskikh 2005)

Examples
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Nonabelian actions on surfaces

These actions can be realized via:

the action on y1y2y3 = 1 via permutation of variables and
taking inverses, with model DP6

the action on x1 + x2 + x3 via permutation and reversing signs,
with model P2

Examples
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Nonabelian actions on surfaces

The action on P2 = P(I ⊕ V2), with coordinates (u0 : u1 : u2) is
given by 1 0 0

0 0 1

0 1 0

,
 1 0 0

0 0 1

0 −1 −1

, ι :=

 1 0 0

0 −1 0

0 0 −1

.

There is one fixed point, (1 : 0 : 0); after blowing up, the
exceptional curve is stabilized by the central involution ι, and
comes with a nontrivial S3-action, contributing the symbol

(C2,S3 ýk(P1), (1)) ∈ [X ý G].

Additionally, the line `0 := {u0 = 0} has as stabilizer the central
C2, contributing the same symbol. ... There are also other terms.
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Nonabelian actions on surfaces

A better model for the second action is the quadric

v0v1 + v1v2 + v2v0 = 3w2,

where S3 permutes the coordinates (v0 : v1 : v2) and the central
involution exchanges the sign on w. There are no G-fixed points,
but a conic R0 := {w = 0} with stabilizer the central C2 and a
nontrivial action of S3,

... and some other terms.

Examples
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Nonabelian actions on surfaces

The crucial difference is that the summand

(C2,S3 ýk(P1), (1))

appears twice in the P2 model, and only once in the quadric model.

No relations can eliminate this symbol.

This P1, with S3-action, should be viewed as an analog of a curve
of genus ≥ 1 in the fixed locus – it will appear on every
equivariantly birational model.

Examples
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Nonabelian actions on surfaces

Similar situations (Bannai–Tokunaga 2007):

S4-action on P2 = P(V3) and DP6:

σ :=

 0 1 0

1 0 0

0 0 1

 τ :=

 0 0 1

1 0 0

0 1 0



λ1 :=

−1 0 0

0 1 0

0 0 −1

, λ2 :=

−1 0 0

0 −1 0

0 0 1



A5-action on P(W3) and on DP5
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Abelian actions in higher dimensions

Abelian actions in dimension 3 are not fully settled, but should be,
in principle, accessible.

The following examples focus on dimension 4, where we currently
do not know how to systematically factor birational maps.
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Birational types: using Burnn(G)

Consider the cubic fourfold X ⊂ P5, given by

x0x
2
1 + x2

0x2 − x0x
2
2 − 4x0x

2
4 + x2

1x2 + x2
3x5 − x2x

2
4 − x3

5 = 0.

G = Z/6Z acts with weights (0, 0, 0, 1, 3, 4). This X is rational,
since it contains the disjoint planes

x0 = x1 − x4 = x3 − x5 = 0 and x2 = x1 − 2x4 = x3 + x5 = 0

There is a cubic surface S ⊂ X, with Z/3Z-stabilizer, Z/2Z fixes an
elliptic curve, and this S is not stably Z/2Z-equivariantly rational;
the corresponding symbol

[Z/3Z,Z/2Z ýk(S), β] 6= 0 ∈ Burn4(Z/6Z),

does not interact with any other symbols in [X ý G]. Thus X is
not G-equivariantly birational to P4 with linear action.

Examples
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Birational types: using Burnn(G)

Consider the cubic fourfold X ⊂ P5, given by

x0x
2
1 + x2

0x2 − x0x
2
2 − 4x0x

2
4 + x2

1x2 + x2
3x5 − x2x

2
4 − x3

5 = 0.
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Nonabelian actions in higher dimensions

Consider the action of G = C2 × A5 on P4 = P(I ⊕W4) (with C2

acting diagonally with −1 on W4) and on

x2
1 + · · ·+ x2

5 = 5x2
0 ⊂ P5,

with C2 acting by x0 → ±x0 and A5 ⊂ S5 via permutations of the
indices.

As before, look for symbols with C2-stabilizers:

(C2,A5 ýK, (1)),

with K = k(Q), where Q is the quadric given by x0 = 0; and

2(C2,A5 ýP(W4), (1)),

for the action on P4 = P(I ⊕W4) – one from the fixed point, and
the other from the hyperplane at infinity. These actions are not
equivariantly birational.
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Algebraic tori

An algebraic torus of dimension n over a field k is a linear algebraic
group T which is a k-form of Gnm. The absolute Galois group
Γk := Gal(k̄/k) acts on its geometric character group

M := X∗(Tk̄)

via a finite subgroup G ⊂ GLn(Z), we have:

ρ := Γk → G ⊂ GLn(Z).

A torus T over k is uniquely determined by this representation.
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Algebraic tori

Rationality of tori over nonclosed fields k has been extensively
studied by Voskresenskii, Endo–Miyata, Colliot-Thélène–Sansuc, ...
The Zariski problem for algebraic tori, i.e., the question of whether
or not stably rational tori over k are rational over k is still open.

The categorical approach to rationality of tori, following Kuznetsov,
has been explored by Ballard–Duncan–Lamarche–McFaddin (2020).
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Algebraic tori

A relevant cohomological obstruction comes from the exact
sequence (of Galois modules)

0→M → Π→ Pic(X)→ 0,

where Π is a permutation module, spanned by geometric
components of the boundary X \ T , in some equivariant projective
compactification X of T .

An obstruction to stable k-rationality is
nontriviality of

H1(G′,Pic(X))

for some subgroup G′ ⊂ G.
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Algebraic tori

Kunyavskii proved this is the only obstruction in dimensions ≤ 3.

However, there are 10 conjugacy classes of subgroups of

C2 × A5

C2 ×S4

for which stable rationality is known but rationality of the
corresponding algebraic tori is unknown.
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Algebraic tori

Focus on G := C2 × A5 ⊂ GL4(Z). The action of A5 is via W4, the
central C2 acts diagonally via (−1).

A compactification is given by

x1x2x3x4x5 = y1y2y3y4y5 ⊂ (P1)5,

where A5 permutes the indices and C2 acts via xi → yi.

The only G-fixed point is the origin. After blowing up have the
symbols

(C2,A5 ýP(W4), (1)).

On the other hand, the linear representation of G given by
P(I ⊕W4), with C2 acting diagonally -1 on the 4-dim piece
contributes two such symbols.

Examples



Algebraic tori

Focus on G := C2 × A5 ⊂ GL4(Z). The action of A5 is via W4, the
central C2 acts diagonally via (−1). A compactification is given by

x1x2x3x4x5 = y1y2y3y4y5 ⊂ (P1)5,

where A5 permutes the indices and C2 acts via xi → yi.

The only G-fixed point is the origin. After blowing up have the
symbols

(C2,A5 ýP(W4), (1)).

On the other hand, the linear representation of G given by
P(I ⊕W4), with C2 acting diagonally -1 on the 4-dim piece
contributes two such symbols.

Examples



Algebraic tori

Focus on G := C2 × A5 ⊂ GL4(Z). The action of A5 is via W4, the
central C2 acts diagonally via (−1). A compactification is given by

x1x2x3x4x5 = y1y2y3y4y5 ⊂ (P1)5,

where A5 permutes the indices and C2 acts via xi → yi.

The only G-fixed point is the origin. After blowing up have the
symbols

(C2,A5 ýP(W4), (1)).

On the other hand, the linear representation of G given by
P(I ⊕W4), with C2 acting diagonally -1 on the 4-dim piece
contributes two such symbols.

Examples



Algebraic tori

Focus on G := C2 × A5 ⊂ GL4(Z). The action of A5 is via W4, the
central C2 acts diagonally via (−1). A compactification is given by

x1x2x3x4x5 = y1y2y3y4y5 ⊂ (P1)5,

where A5 permutes the indices and C2 acts via xi → yi.

The only G-fixed point is the origin. After blowing up have the
symbols

(C2,A5 ýP(W4), (1)).

On the other hand, the linear representation of G given by
P(I ⊕W4), with C2 acting diagonally -1 on the 4-dim piece
contributes two such symbols.

Examples



Specialization

To understand specialization, we introduce invariants of
quasi-projective varieties:

[U ý G]naive :=
∑
H

∑
V⊂U

(H,NG(H)/H ýk(V ), βV (U)) ∈ Burnn(G)

where the sum is over (conjugacy classes of) abelian subgroups
H ⊂ G, V has generic stabilizer H, an abelian subgroup of G.

This is a G-birational invariant.

However, with this definition, the boundary does not carry enough
information about U ý G.
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Specialization

To rectify this, consider

U = X \D, D = ∪i∈IDi, DI := ∩i∈IDi, I ⊆ I,

where U has generically free G-action, Di are G-invariant.

Put

[U ý G] := [X ý G] +
∑
∅6=I⊆I

(−1)|I|[NDI/X ý G]naive.

Note that the classes [U ý G] generate Burnn(G).
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Equivariant Burnside volume

Imitating the above construction in the relative setting, we have:

Theorem (Kresch-T. 2020)

Let o be a DVR with fraction field K and residue field k, of
characteristic zero. There exists a well-defined homomorphism
(depending on the choice of uniformizer π)

ρGπ : Burnn,K(G)→ Burnn,k(G).

Specialization



Specialization

Major recent progress in birational geometry, using failure of
(stable) rationality via specialization:

Voisin (2013): integral decomposition of ∆ (Bloch–Srinivas)

Colliot-Thélène–Pirutka (2015): universal CH0-triviality

Nicaise–Shinder (2017): K0(V ark)/L, char(k) = 0

Kontsevich–T. (2017): Burn(k), char(k) = 0

Specialization



Specialization of equivariant birational types

Theorem (Kresch-T. 2020)

Let X and X ′ be smooth projective varieties over K with
generically free G-actions, admitting regular models X , respectively
X ′, smooth and projective over o, to which the G-action extends. If
X and X ′ are G-equivariantly birational over K then so are the
special fibers of X and X ′.

Specialization



Specialization of equivariant birational types

There is also a notion of mild singularities allowing to understand
the equivariant birational type of special fibers:

Definition

We say that X0 has BG-rational singularities if for every projective
model X over o, with G-action, smooth generic fiber X, and special
fiber G-equivariantly isomorphic to X0 we have

ρGπ ([X ý G]) = [X0 ý G].

For example, if the singular locus of X0 is an orbit of rational
double points, on which G acts simply transitively, then X0 has
BG-rational singularities.
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Modular/motivic types Mn(G), n ≥ 2

Let G be an abelian group. Consider the Z-module

Mn(G)

generated by unordered tupels 〈a1, . . . , an〉, ai ∈ A, such that

(G)
∑

i Zai = A, and

(M) for all a1, a2, b1, . . . , bn−2 ∈ A we have

〈a1, a2, b1, . . . bn−2〉 =

〈a1 − a2, a2, b1, . . . , bn−2〉+ 〈a1, a2 − a1, b1, . . . , bn−2〉.

The only difference with Bn(G): [a, a] = [a, 0], 〈a, a〉 = 2〈a, 0〉.

Motivic types
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Birational types → modular types

Consider the map
µ : Bn(G)→Mn(G)

(µ0) [a1, . . . , an] 7→ 〈a1, . . . , an〉, if all a1, . . . , an 6= 0,

(µ1) [0, a2, . . . , an] 7→ 2〈0, a2, . . . , an〉, if all a2, . . . , an 6= 0,

(µ2) [0, 0, a3, . . . , an] 7→ 0, for all a3, . . . , an,

and extended by Z-linearity.

Motivic types



Birational types → modular types

Theorem

µ is a well-defined homomorphism; surjective, modulo 2-torsion
(Kontsevich-Pestun-T. 2019)

µ is an isomorphism, ⊗Q (Hassett-Kresch-T. 2020)
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Modular types – lattice theory

Consider the free abelian group Sn(G), generated by symbols

β = [a1, . . . , an] = [aσ(1), . . . , aσ(n)], ∀σ ∈ Sn,

where β is an n-dimensional faithful representation of G, i.e., a
collection of characters a1, . . . , an of G, up to permutation,
spanning G∨.

We have a diagram

Sn(G)
b // Bn(G)

µ

��
Sn(G)

m //Mn(G)
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Modular types – lattice theory

Consider the free abelian group on triples

(L, χ,Λ),

where

L ' Zn is an n-dimensional lattice,

χ ∈ L⊗A is an element inducing, by duality, a surjection
L∨ → A,

Λ is a basic cone, i.e., a simplicial cone spanned by a basis of L.

Motivic types



Modular types – lattice theory

Let T be the quotient by GLn(Z)-equivalence. There is a natural
map

T → Sn(G),

(L, χ,Λ) 7→ [a1, . . . , an],

defined by decomposing

χ =

n∑
i=1

ei ⊗ ai, ai ∈ A,

where {e1, . . . , en} is a basis of Λ.

The symmetry property is precisely the ambiguity in the order of
generating elements of Λ.

Motivic types
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Modular types – lattice theory

Imposing scissor-type relations on T, via subdivision of cones, we
obtain a diagram

T
ψ

,,XXXXX
XXXXXX

XXXXXX

s

����

Mn(G)

T/(scissor-type relations)

∼ 33fffffffffff

Motivic types



Birational types – lattice theory

There is a similar group T̃, based on triples

(L, χ,Λ′),

where now Λ′ is a smooth cone of arbitrary dimension (i.e., one
spanned by part of a basis of L), such that

χ ∈ Im(L′ ⊗A→ L⊗A),

where L′ ⊆ L is the sublattice spanned by Λ′.

Again, impose relations coming from the GLn(Z)-action.

There is a natural map

T̃ → Sn(G),

(L, χ,Λ′) 7→ [a1, . . . , an].
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Birational types – lattice theory

For a face Λ′′ of Λ′ of dimension at least 2,

Λ′′ = R≥0〈e1, . . . , er〉 ⊂ Λ′ = R≥0〈e1, . . . , es〉,

consider the star subdivision

Σ∗Λ′(Λ
′′),

consisting of the 2r − 1 cones spanned by

e1 + · · ·+ er, er+1, . . . , es,

and all proper subsets of {e1, . . . , er}.

Motivic types



Birational types – lattice theory

We introduce Subdivision relations on T̃:

(S) Put

(L, χ,Λ′) =
∑

Λ̃′∈Σ∗
Λ′ (Λ

′′)

χ∈Im(L̃′⊗A→L⊗A)

(−1)dim(Λ′)−dim(Λ̃′)(L, χ, Λ̃′),

respectively,

(L, χ,Λ′) = (L, χ,Λ), for a basic cone Λ, having Λ′ as a face.

Motivic types



Birational types – lattice theory

We have:

T̃
ψ̃

++WWWW
WWWWW

WWWWW
WWW

s̃
����

Bn(G)

T̃/(subdivision relations)

∼
33ggggggggg

Motivic types



Birational types – lattice theory

The definition of
ψ̃(L, χ,Λ′)

extends to the case of a simplicial cone Λ′ (satisfying the
condition), with L′ = L ∩ Λ′R.

We can define Hecke operators

T`,r : Bn(G)→ Bn(G),

where ` - |G| and 1 ≤ r ≤ n− 1, as a sum over certain overlattices:

T`,r(ψ̃(L, χ,Λ′)) :=
∑

L⊂L̂⊂L⊗Q
L̂/L'(Z/`Z)r

ψ̃(L̂, χ,Λ′).
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Birational symbols groups
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and applications to equivariant rationality

Intricate internal structure
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