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Let  be a smooth projective variety over ,  be an ample class.

Gromov-Witten theory in genus zero gives operators ,  acting on supervector
space , with coefficients in  where  are coordinates in 

 (or in a complement to ).

The main hero is the meromorphic connection:
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on the trivial bundle with fiber  over the -plane .

We have an isomondromic deformation of this connection over the parameter
space  (or its formal subschemes corresponding to deformations
by the -span of the image of the total Chow group of  in ).
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Eigenvalues of  form the quantum spectrum  of , it depends in general
on parameters. If  is Calabi-Yau or of general type, the spectrum consists of
only one point, independently on the value of parameters of deformation.

Quantum spectrum at  consists always of only one point . 
The reason is that at  quantum product coincides with the classical one, and
the ring  is local (for connected ).

Hypothetically, elements of the quantum spectrum parametrize terms in a semi-
orthogonal decomposition of  (elementary pieces). Unconditionally,
there is a decomposition of  into a direct sum.

We would like to associate with each point of the spectrum a rational (?non-
negative) number called the dimension.
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Expected properties of dimensions:

1. for  the spectrum consists of only one point, and the dimension
associated to it is ,

2. the dimension is upper semi-continuous: if after a deformation, an eigenvalue of
 splits into a cluster of several ( ) eigenvalues, then the new dimensions

are  the dimension of the initial eigenvalue,

3. (facultative) if there exists a semi-orthogonal decomposition of 
corresponding to the spectrum, and each component  is indecomposable (not
a direct sum of two proper subcategories), then the dimension associated to the
corresponding eigenvalue  coincides with the Serre dimension of category .
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Reminder: Serre dimensions (after A.Elagin and V.Lunts)

dim  C :Serre =  {  ∣Ext (Id  , S  ) =
∣k∣→+∞

lim
k

i i
C C

k  0} ⊂ R

Here  is the Serre functor as defined by A.Bondal and M.Kapranov:

Hom  (E , F ) =C
∗ Hom  (F , S  E), ∀E , F ∈C C Ob(C)

In general, Serre dimension could be an empty set, or an interval.

For categories  it is exactly the dimension . 
For a fractional Calabi-Yau category  the Serre dimension is equal to
Calabi-Yau dimension , hence fractional. Example: Fukaya-Seidel category of 

.
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Applications to non-rationality

Just properties 1,2 together with the Blow-up conjecture imply the following
criterion for non-rationality (assuming dimension ):

if for -dimensional variety  and a generic parameter in , there exists a
point in the quantum spectrum of dimension , then  is not rational.

This criterion is arithmetic (not purely geometric): the generic decomposition
depends on the non-algebraically closed field of definition of  (as 
depends on the field).

Ludmil will talk more about examples. The criterion seems to be extremely close to
be adequate.
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Numerical example

Let  be a smooth 3-dimensional cubic in , . All parameters 
 are set to be zero, so we are left with only one parameter  for the qunatum

product. Operators  restricted to the even part, which is 4-dimensional space 
, basis = powers of the hyperplane section, are:
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Solutions of the equation
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Claim:  where  is a fractional Calabi-Yau
category of dimension .
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Definition of dimension via the solution growth

Conjecture :  dim  C  = −2 min{s ∈ Q  ∣ ∃ solution ∼ u log(u) e + … }Serre z  i ⩽0
s k  

u

z  i

Evidence: if  is a Fano complete intersection of hypersurfaces of degrees 
 in , then the corresponding semi-orthogonal decomposition is

D (Coh(X)) =b ⟨O, O(1), … , O(n − d  ), Kuznetsov component⟩sum

where , the spectrum is . The predicted Serre
dimension for the Kuznetsov component  is
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Moreover, calculations show that there is always a very striking equality

max{i ∈ 2Z + dimX ∣i ⩽ dim  C  }Serre z=0 =!

=! max{k ∈ Z∣HH  (C  ) =k z=0  0} := max{q − p∣H (X) =p,q  0}

Analogy: for any smooth projective variety  we have:

dim Y ⩾ max{k ∈ Z∣HH  (PerfY ) =k  0} = max{q − p∣H (Y ) =p,q  0}

The formula for the growth exponent (and hence hypothetically for Serre
dimension) generalizes to so-called smooth well-formed complete intersections in
weighted projective spaces (main tool: Givental's hypergeometric equation):
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Relation to Reconstruction theorem

In general, for Fano variety , the meromorphic connection  
is nice (algebro-geometric, or known explicitly) only for all parameters  equal
to zero, except those corresponding to  and .

It seems to be a hard question in GW theory to understand whether deformations
corresponding to classes from  will lead to an additional
splitting of eigenvalues, or not.

I expect that if  is generated as a ring (with the classical multiplication)
by , then this additional splitting will not happen. The rationale is the
Reconstruction theorem (M.K, Yu.Manin 1994): in this case all genus zero GW
invariants restricted to  are uniquely determined by the quantum
product deformed only in -direction (and only classes 
are needed, besides the classical product).
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Landau-Ginzburg model perspective

Let  be a noncompact complex manifold of dimension , and 
be a holomorphic map. Denote by  the critical locus considered as a
closed analytic subspace (possibly non-reduced).

Assumptions:

1. (the most crucial)  is compact

2. (also important) there exists a Kähler metric on  (the choice is not a part of
the structure, only existence is required)

3. (technical, for later convenience)  is nonempty and connected, and
moreover .

What follows will not change if we replace  by any open subset 
containing  (alternatively, one can consider  as a germ at ).
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Consider -graded complex

(Γ(Y , Ω  (Y )[[u]],  differential d  :C∞
∙

tot = +∂̄ u∂ + dW ∧ ⋅)

It calculates hypercohomology . 
If  (i.e. not only a formal series in , but a germ of
analytic [forms on ]-valued function at  and near the compact set 
) then  means that
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Conjecture ( ): Cohomology of 
 is a free finite rank (equivalently, flat) -module.

It is true in algebro-geometric situation by irregular Hodge theory.
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Let us assume that  is endowed with an everywhere non-vanishing holomorphic
volume form .

Then in the case when  is connected and non-empty, there is a canonical
1-dimensional subspace at the fiber at :

[vol] ∈ H (Y , Ω  , dW ∧ ⋅) →n
Y
∙
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Conjecture: the leading growth of solutions appears in the exactly one-
dimensional subspace of cohomology of , its reduction at  is .

Upper semicontinuity: was proven by A.Varchenko for isolated singularities, by
J.Steenbrink in general. Problem: deformations of  .
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Abstract semi-continuity conjecture (minimal version).

Let  be a semisimple operator with spectrum in  (i.e
a -grading on ), and we have two formal series

A = A  +0 A  t +1 … ,K = K  +0 K  t +1 ⋯ ∈ Mat(N × N ,C[[t]])

satisfying equations

[A,K ] = 0
t∂  K +t [A,G] = 0

which means that we get a flat connection: .

Then one has special connection over  given by , and generic
connection over  given by .
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Conjecture: Assume that  is nilpotent and the special connection 
 has regular singularities. Then the generic connection is of

exponential type, and the exponent of the largest growth of a regular solution of
the special connection is more singular than those of the general connection (over
the base field ).

Strictly speaking, the above conjecture does not make sense as the "largest
growth" exponent for the base field  is an element of its algebraic closure

 =C((t))  C((t )) (Puiseux series)
N→+∞

lim  

N
1

We expect that the "largest growth" exponent for the generic connection is in fact
an element of , and it differs from the largest growth exponent for the
special connection by a rational number.
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