Dimension theory

Maxim Kontsevich

IHES

Let X be a smooth *projective* variety over \mathbb{C} , $[\omega] \in H^2(X,\mathbb{Z})$ be an ample class.

Gromov-Witten theory in genus zero gives operators \mathbf{K} , \mathbf{G} acting on supervector space $H^{\bullet}(X)$, with coefficients in $\mathbb{Q}[[q,(t_a)]]$ where (t_a) are coordinates in $H^{\bullet}(X)$ (or in a complement to $\mathbb{Q} \cdot [\omega]$).

The main hero is the meromorphic connection:

$$abla_{rac{ud}{du}} = rac{ud}{du} + rac{1}{u} \mathbf{K} + \mathbf{G}$$

on the trivial bundle with fiber $H^ullet(X)$ over the u-plane \mathbb{A}^1_u .

We have an isomondromic deformation of this connection over the parameter space $\mathsf{Specf}\mathbb{Q}[[q,(t_a)]]$ (or its formal subschemes corresponding to deformations by the \mathbb{Q} -span of the image of the total Chow group of X in $H^{\bullet}(X,\mathbb{Q})$).

Eigenvalues of \mathbf{K} form the *quantum spectrum* $\{(z_i)\}$ of X, it depends in general on parameters. If X is Calabi-Yau or of general type, the spectrum consists of only one point, independently on the value of parameters of deformation.

Quantum spectrum at q=0 consists always of only one point $z=z_1=t_1$. The reason is that at q=0 quantum product coincides with the classical one, and the ring $H^{\bullet}(X)$ is local (for connected X).

Hypothetically, elements of the quantum spectrum parametrize terms in a semi-orthogonal decomposition of $D^b(Coh(X))$ (elementary pieces). Unconditionally, there is a decomposition of $H^{\bullet}(X)$ into a direct sum.

We would like to associate with each point of the spectrum a rational (?non-negative) number called the **dimension**.

Expected properties of dimensions:

- 1. for q=0 the spectrum consists of only one point, and the dimension associated to it is $\dim X$,
- 2. the dimension is upper semi-continuous: if after a deformation, an eigenvalue of ${\bf K}$ splits into a cluster of several ($\geqslant 2$) eigenvalues, then the new dimensions are \leqslant the dimension of the initial eigenvalue,
- 3. (facultative) if there exists a semi-orthogonal decomposition of $D^b(Coh(X))$ corresponding to the spectrum, and each component \mathcal{C}_i is indecomposable (not a direct sum of two proper subcategories), then the dimension associated to the corresponding eigenvalue z_i coincides with the *Serre dimension* of category \mathcal{C}_i .

Reminder: Serre dimensions (after A.Elagin and V.Lunts)

$$\dim_{\operatorname{Serre}} \mathcal{C} := \lim_{|k| o +\infty} ig\{rac{i}{k}|Ext^i(\operatorname{Id}_{\mathcal{C}}, S^k_{\mathcal{C}})
eq 0ig\} \subset \mathbb{R}$$

Here $S_{\mathcal{C}}:\mathcal{C} o \mathcal{C}$ is the Serre functor as defined by A.Bondal and M.Kapranov:

$$\operatorname{Hom}_{\mathcal{C}}(E,F)^* = \operatorname{Hom}_{\mathcal{C}}(F,S_{\mathcal{C}}E), \qquad orall E,F \in Ob(\mathcal{C})$$

In general, Serre dimension could be an empty set, or an interval.

For categories $D^b(Coh(X))$ it is exactly the dimension $\dim X\in\mathbb{Z}_{\geqslant 0}$. For a fractional Calabi-Yau category $S^k_{\mathcal{C}}\sim [n]$ the Serre dimension is equal to Calabi-Yau dimension $\frac{n}{k}$, hence fractional. **Example**: Fukaya-Seidel category of $Y=\mathbb{C}_x, W=x^d, d\geqslant 2: \dim_{\operatorname{Serre}} \mathcal{F}S(Y,W)=1-\frac{2}{d}$.

Applications to non-rationality

Just properties 1,2 together with the Blow-up conjecture imply the following criterion for non-rationality (assuming dimension $n \geqslant 2$):

if for n-dimensional variety X and a generic parameter in \mathcal{M}_X^{alg} , there exists a point in the quantum spectrum of dimension > (n-2), then X is not rational.

This criterion is arithmetic (not purely geometric): the generic decomposition depends on the non-algebraically closed field of definition of X (as \mathcal{M}_X^{alg} depends on the field).

Ludmil will talk more about examples. The criterion seems to be extremely close to be adequate.

Numerical example

Let X be a smooth 3-dimensional cubic in \mathbb{P}^4 , $[\omega]:=c_1(\mathcal{O}(1))$. All parameters (t_a) are set to be zero, so we are left with only one parameter q for the qunatum product. Operators \mathbf{K} , \mathbf{G} restricted to the even part, which is 4-dimensional space $H^{even}(X)=\oplus_{i=0}^3 H^{2i}(X)$, basis = powers of the hyperplane section, are:

$$\mathbf{K} = 2 \cdot egin{pmatrix} 0 & 6q & 0 & 36q^2 \ 1 & 0 & 15q & 0 \ 0 & 1 & 0 & 6q \ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{G} = egin{pmatrix} -rac{3}{2} & 0 & 0 & 0 \ 0 & -rac{1}{2} & 0 & 0 \ 0 & 0 & rac{1}{2} & 0 \ 0 & 0 & 0 & rac{3}{2} \end{pmatrix}.$$

Solutions of the equation

$$\left(rac{ud}{du}+rac{1}{u}{f K}+{f G}
ight)\psi(u)=0$$

grow at u o 0 as

$$egin{aligned} &\sim e^{rac{6\sqrt{3q}}{u}}, \sim e^{-rac{6\sqrt{3q}}{u}}, \sim u^{-rac{1}{6}}, \sim u^{-rac{5}{6}} & (q
eq 0) \ &\sim u^{-rac{3}{2}}, u^{-rac{3}{2}} \cdot \log u, u^{-rac{3}{2}} \cdot (\log u)^2, u^{-rac{3}{2}} \cdot (\log u)^3 & (q = 0) \end{aligned}$$

Claim: $D^b(Coh(X)) = \langle \mathcal{O}, \mathcal{O}(1), \mathcal{C} \rangle$ where \mathcal{C} is a fractional Calabi-Yau category of dimension $\frac{5}{3}$.

Definition of dimension via the solution growth

$$extbf{Conjecture}: \overline{\dim_{\operatorname{Serre}} C_{z_i} = -2\min\{s \in \mathbb{Q}_{\leqslant 0} | \; \exists \; \operatorname{solution} \; \sim u^s \log(u)^k e^{rac{z_i}{u}} + \dots \}}$$

Evidence: if X is a Fano complete intersection of hypersurfaces of degrees d_1,\ldots,d_r in \mathbb{P}^n , then the corresponding semi-orthogonal decomposition is

$$D^b(Coh(X)) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n-d_{sum}), ext{Kuznetsov component}
angle$$

where $d_{sum}:=\sum_i d_i$, the spectrum is $\{0\}\cup \mu_{n+1-d_{sum}}$. The predicted Serre dimension for the Kuznetsov component $\mathcal{C}_{z=0}$ is

$$\dim_{\operatorname{Serre}} C_{z=0} = (n-r) - 2\,rac{n+1-\sum_i d_i}{\max_i d_i} = \dim X - 2\,rac{n+1-d_{\mathsf{sum}}}{d_{\mathsf{max}}}$$

Fano index of X

Moreover, calculations show that there is always a very striking equality

$$\max\{i\in 2\mathbb{Z}+\dim X|i\leqslant \dim_{\operatorname{Serre}}C_{z=0}\}\stackrel{!}{=}$$

$$\stackrel{!}{=} \max\{k \in \mathbb{Z} | HH_k(\mathcal{C}_{z=0})
eq 0\} := \max\{q-p| H^{p,q}(X)
eq 0\}$$

Analogy: for any smooth projective variety Y we have:

$$\dim Y\geqslant \max\{k\in\mathbb{Z}|\,HH_k(\mathsf{Perf}Y)
eq 0\}=\max\{q-p|\,H^{p,q}(Y)
eq 0\}$$

The formula for the growth exponent (and hence hypothetically for Serre dimension) generalizes to so-called smooth *well-formed* complete intersections in *weighted* projective spaces (main tool: Givental's hypergeometric equation):

$$\dim_{\operatorname{Serre}} C_{z=0} \stackrel{?}{=} \dim X - 2\,rac{w_{\operatorname{\mathsf{sum}}} - d_{\operatorname{\mathsf{sum}}}}{d_{\operatorname{\mathsf{max}}}}, \quad w_{\operatorname{\mathsf{sum}}} := \sum_j w_j \,\, ext{for} \,\, \mathbb{P}^{w_0,\dots,w_n}$$

Relation to Reconstruction theorem

In general, for Fano variety X, the meromorphic connection $\frac{ud}{du} + \frac{1}{u}\mathbf{K} + \mathbf{G}$ is nice (algebro-geometric, or known explicitly) only for all parameters (t_a) equal to zero, except those corresponding to $H^0(X)$ and $H^2(X)$.

It seems to be a hard question in GW theory to understand whether deformations corresponding to classes from $H^4(X), H^6(X), \ldots$ will lead to an additional splitting of eigenvalues, or not.

I expect that if $H^{even}(X)$ is generated as a ring (with the classical multiplication) by $H^2(X)$, then this additional splitting will not happen. The rationale is the Reconstruction theorem (M.K, Yu.Manin 1994): in this case all genus zero GW invariants restricted to $H^{even}(X)$ are **uniquely** determined by the quantum product deformed only in $H^2(X)$ -direction (and only classes $[\overline{\mathcal{M}}_{0,2}(X,\beta)]_{virt}$ are needed, besides the classical product).

Landau-Ginzburg model perspective

Let Y be a noncompact complex manifold of dimension $n\geq 0$, and $W:Y\to \mathbb{C}$ be a holomorphic map. Denote by $\mathsf{Crit}(W)\subset Y$ the critical locus considered as a closed analytic subspace (possibly non-reduced).

Assumptions:

- 1. (the most crucial) $\mathsf{Crit}(W)$ is compact
- 2. (also important) there exists a Kähler metric on Y (the choice is *not* a part of the structure, only existence is required)
- 3. (technical, for later convenience) $\mathsf{Crit}(W)$ is nonempty and connected, and moreover $f(\mathsf{Crit}(W)) = \{0\} \subset \mathbb{C}$.

What follows will not change if we replace Y by any open subset $Y' \subset Y$ containing $\mathsf{Crit}(W)$ (alternatively, one can consider Y as a germ at $\mathsf{Crit}(W)$).

Consider \mathbb{Z} -graded complex

$$(\Gamma(Y,\Omega_{C^\infty}^ullet(Y)[[u]], ext{ differential } d_{ ext{tot}} := ar{\partial} + u\partial + dW \wedge \cdot)$$

It calculates hypercohomology $R\Gamma(Y,\Omega_Y^ullet[u]],ud+dW\wedge\cdot)$. If $\alpha\in\Gamma(Y,\Omega_{C^\infty}^ullet(Y))\{u\}$ (i.e. not only a formal series in u, but a germ of analytic [forms on Y]-valued function at u=0 and near the compact set $\mathsf{Crit}(W)$) then $d_{\mathrm{tot}}\alpha=0$ means that

$$dig(e^{rac{W}{u}}u^{\mathbf{Gr}}(lpha)ig)=0, \qquad \mathbf{Gr}_{|\Omega^{p,q}_{C^\infty}}:=rac{q-p}{2}$$

Conjecture (Hodge-de Rham degeneration for LG models): Cohomology of d_{tot} is a free finite rank (equivalently, flat) $\mathbb{C}[[u]]$ -module.

It is true in algebro-geometric situation by irregular Hodge theory.

Let us assume that Y is endowed with an everywhere non-vanishing holomorphic volume form $vol \in \Gamma(Y,\Omega^n), \quad n=\dim Y.$

Then in the case when $\mathsf{Crit}(W)$ is connected and non-empty, there is a canonical 1-dimensional subspace at the fiber at 0:

$$egin{aligned} [vol] &\in \mathbb{H}^n(Y,\Omega_Y^ullet,dW \wedge \cdot)
ightarrow \ &
ightarrow \mathbb{H}^n(\mathsf{Crit}(W),(\Omega_Y^ullet)_{|\mathsf{Crit}(W)})
ightarrow \ &
ightarrow H^0(\mathsf{Crit}^{red}(W),\Omega_Y^n) = \mathbb{C}
otag 1 \end{aligned}$$

Conjecture: the leading growth of solutions appears in the exactly one-dimensional subspace of cohomology of d_{tot} , its reduction at u=0 is $\mathbb{C}\cdot [vol]$.

Upper semicontinuity: was proven by A. Varchenko for isolated singularities, by J. Steenbrink in general. *Problem*: deformations of $(Y, W) \iff H^2(\operatorname{mirror})$.

Abstract semi-continuity conjecture (minimal version).

Let $G\in Mat(N imes N,\mathbb{C})$ be a semisimple operator with spectrum in $\mathbb{Z}\subset\mathbb{C}$ (i.e a \mathbb{Z} -grading on \mathbb{C}^N), and we have two formal series

$$A=A_0+A_1t+\ldots, K=K_0+K_1t+\cdots\in Mat(N imes N,\mathbb{C}[[t]])$$

satisfying equations

$$[A,K]=0 \ t\partial_t K + [A,G]=0$$

which means that we get a flat connection: $\left[t\partial_t+rac{A}{u},\partial_u+rac{K}{u^2}+rac{G}{u}
ight]=0.$

Then one has special connection over $\mathbb C$ given by $\partial_u+\frac{K_0}{u^2}+\frac{G}{u}$, and generic connection over $\mathbb C((t))$ given by $\partial_u+\frac{K}{u^2}+\frac{G}{u}$.

Conjecture: Assume that K_0 is nilpotent and the special connection $\partial_u + \frac{K_0}{u^2} + \frac{G}{u}$ has regular singularities. Then the generic connection is of exponential type, and the exponent of the largest growth of a regular solution of the special connection is more singular than those of the general connection (over the base field $\mathbb{C}((t))$).

Strictly speaking, the above conjecture does not make sense as the "largest growth" exponent for the base field $\mathbb{C}((t))$ is an element of its algebraic closure

$$\overline{\mathbb{C}(\!(t)\!)} = \!\!\! \lim_{N o +\infty} \mathbb{C}(\!(t^{rac{1}{N}})\!) \quad ext{(Puiseux series)}$$

We expect that the "largest growth" exponent for the generic connection is in fact an element of $\mathbb{C} \subset \overline{\mathbb{C}(t)}$, and it differs from the largest growth exponent for the special connection by a *rational* number.