Blow-up formula for quantum cohomology

Maxim Kontsevich

IHES

1. General framework for quantum products

Algebraic version over \mathbb{C} : X - a smooth connected complex quasi-projective variety, with an ample line bundle \mathcal{L} (e.g. the pullback of $\mathcal{O}(1)$).

Assumption: (the minimal amount of "convexity at infinity"):

for any compact subset $K\subset X$ and any homology class $\beta\in H_2(X,\mathbb{Z})$, there exists a larger compact set $K',\,K\subset K'\subset X$ such that for any compact semistable map $\phi:C\to X$ of genus zero, with class $\phi_*[C]=\beta$ and touching K (i.e. $\phi(C)\cap K\neq\emptyset$) we have $\phi(C)\subset K'$.

A sufficient condition: there exists a proper morphism $X \to B$ where B is affine (a typical situation in GIT).

One can mostly have in mind the basic case: X is projective.

Under the above convexity-at-infinity assumption, we have a well-defined Gromov-Witten invariant for any $\beta \in H_2(X,\mathbb{Z})$ and $n \geq 1$:

$$\langle \delta_1, \dots, \delta_{n-1}; \delta_{(c)}
angle_eta := \int_{[\overline{\mathcal{M}}_{g,n}(X,eta)]_{virt}} \prod_{i=1}^{n-1} ev_i^*(\delta_i) \cdot ev_n^*(\delta_{(c)})$$

where $\delta_1,\ldots,\delta_{n-1}\in H:=H^{ullet}(X,\mathbb{Q}),\quad \delta_{(c)}\in H^{ee}=H^{ullet}_c(X,\mathbb{Q}).$ This gives a symmetric polylinear map of supervector spaces $Sym^{n-1}H\to H$.

Choose a \mathbb{Z} -graded basis $(\Delta_a)_{a=1,\dim H}$ of H containing $\mathbf{1}\in H^0(X,\mathbb{Q})$ and $c_1(\mathcal{L})\in H^2(X,\mathbb{Q})$, define the quantum product $\star:Sym^2H\to H[[q,(t_a)]]$ by

$$(\delta_1\star\delta_2,\delta_{(c)}):=\sum_{eta}\sum_{\substack{m\geq 0\a_1,\ldots,a_m}}q^{\int_eta\,c_1(\mathcal{L})}rac{\prod_{i=1}^mt_{a_i}}{m!}\langle\delta_1,\delta_2,\Delta_{a_1},\ldots,\Delta_{a_m};\delta_{(c)}
angle_eta$$

 \leadsto commutative associative products on H parametrized by $\mathsf{Specf}\ \mathbb{Q}[[q,(t_a)]].$ Define a connection on the trivial bundle with fiber H over $\mathsf{Specf}\ \mathbb{Q}[[q,(t_a)]][u]$:

$$egin{align}
abla_{rac{ud}{du}} &= rac{ud}{du} + rac{1}{u}\mathbf{K} + \mathbf{G} \
abla_{rac{d}{dt_a}} &= rac{d}{dt_a} + rac{1}{u}\mathbf{A}_a, \quad
abla_{rac{qd}{dq}} &= rac{qd}{dq} + rac{1}{u}\mathbf{A}_{a:\Delta_a = c_1(\mathcal{L})}
onumber \end{aligned}$$

where

- $oldsymbol{\cdot}$ $oldsymbol{\mathrm{K}}$ = quantum product with $c_1(T_X) + \sum_a (2 \deg \Delta_a) t_a \Delta_a$,
- ${\bf A}_a$ = quantum product with Δ_a ,
- ullet $\mathbf{G}_{|H^i(X)}=rac{i-\dim X}{2}\cdot \mathrm{id}_{H^i(X)}\quad orall \ i=0,\ldots,2\dim X.$

This connection is *flat*, has poles at hyperplanes u=0 and q=0.

Variables t_a corresponding to $\mathbf{1} \in H^0(X,\mathbb{Q})$ and $c_1(\mathcal{L}) \in H^2(X,\mathbb{Q})$ are special: the dependence of the quantum product \star on the variable (say, t_1) corresponding to $\mathbf{1}$ is *trivial*, whereas the variable (say, t_2) corresponding to $c_1(\mathcal{L})$ can be *ignored*, as it is equivalent to $\log(q)$.

We will be interested only in the restriction of the above flat connection to the purely even vector subspace for (t_a) -coordinates which we denote by $H_{alg}(X) \subset H$. It is the subspace spanned by the classes of closed algebraic subvarieties in X. Let us choose a graded complement $H'_{alg}(X)$ to $\mathbb{Q} \cdot c_1(\mathcal{L})$.

The result is a meromorphic flat connection on a super vector bundle $\mathcal{H}=\mathcal{H}^{even}\oplus\mathcal{H}^{odd}$ on $\mathbb{P}^1_u\times\mathcal{M}^{alg}$ where \mathcal{M}^{alg} is a formal scheme over \mathbb{Q} (equal in our case to $\operatorname{Specf}\mathbb{Q}[[q,H'_{alg}(X)]]$). All this satisfies a bunch of properties (e.g. ensuring that \mathcal{H} is canonically *trivialized*). Flat coordinates on \mathcal{M}^{alg} can be extracted from this structure and element $\mathbf{1}\in H^{even}=\Gamma(\mathcal{H}^{even})$.

Generalizations:

- ullet X can be a smooth Deligne-Mumford stack (in this case replace $H^ullet(X)$ by string cohomology $H^ullet_{str}(X):=H^ullet({
 m inertia\ stack\ of\ }X)$),
- ullet X can be also endowed with a torsion class in the Brauer group, giving a bundle of Azumaya algebras,
- class $c_1(\mathcal{L})$ of an ample bundle can be replaced by any functional $\deg: H_2(X,\mathbb{Z}) \to \mathbb{Z}$ which is non-negative on classes of rational curves, and such that for given degree $\deg \in \mathbb{Z}_{\geq 0}$ and given pairing $\in \mathbb{Z}$ with $c_1(T_X)$, there are only *finitely many* homology classes represented by rational curves. Sufficient condition: $\deg(\beta) = ([\omega], \beta) \quad \forall \beta \in H_2(X, \mathbb{Z})$ where cohomology class $[\omega] \in H^2(X, \mathbb{Z})$ is *non-negative*, and there exists constant $C \in \mathbb{Q}$ such that cohomology class $[\omega] + C \cdot c_1(T_X)$ is strictly positive.

Different choices of $[\omega]$ give the *same* information, can be recalculated.

There are further deformations of the quantum product:

- by adding gravitational descendants,
- by adding a multiplicative characteristic class of $R\Gamma(C,\phi^*E)$, where $\phi:C o X$ is the universal stable map (depending on a point in $\overline{\mathcal{M}}_{g,n}(X,\beta)$) and E is an algebraic vector bundle on X.

By Coates-Givental formalism, these deformations can be recalculated, by some universal formulas, from the original small quantum product.

Finally, GW-theory can be formulated for varieties definitely over *arbitrary* field \mathbf{k} of characteristic zero (hypothetically also in positive characteristic.).

We can assume safely that $\mathbf{k}\subset\mathbb{C}$.

Definition 1: $H_{alg}^{\bullet}(X) := \mathbb{Q}$ -subspace in $H_{Betti}^{\bullet}(X) := H^{\bullet}(X(\mathbb{C})_{an}, \mathbb{Q})$ spanned by classes [Z] of closed subvarieties defined over \mathbf{k} . It is a finite-dimensional (even) vector space over \mathbb{Q} .

Definition 2: $End_{alg}(X):=\mathbb{Q}$ -subalgebra in $End(H^{\bullet}_{Betti}(X))$ generated by the grading operator and by classes $[Z]\in H^{\bullet}_{c}(X(\mathbb{C})_{an},\mathbb{Q})\otimes H^{\bullet}(X(\mathbb{C})_{an},\mathbb{Q})$ of subvarieties $Z\subset X\times X$ defined over \mathbf{k} and proper over the first factor X. It is just a finite-dimensional (even) algebra over \mathbb{Q} containing commuting projectors pr_{i} to graded components, $i=0,\ldots,2\dim X$. Space $H^{\bullet}_{alg}(X)$ is a module over (the even part) of this algebra. By comparison isomorphisms, both algebra $End_{alg}(X)$ and module $H^{\bullet}_{alg}(X)$ do not depend on the embedding to \mathbb{C} .

2. Quantum spectrum and Blow-up conjecture

Operator ${\bf K}$ (the quantum product with $c_1(T_X)+\ldots$) is an even endomorphism of super vector space $H=H^{ullet}(X)$ parametrized by the formal polydisc ${\cal M}^{alg}={\sf Specf}\ {\mathbb Q}[[q,H'_{alg}(X)]].$ The (generic) quantum spectrum ${\sf Spec}_X$ is the spectrum of ${\bf K}$ at the *generic* point of ${\cal M}^{alg}$.

The goal of my lectures is to formulate several conjectures concerning the quantum spectrum and its behavior under blow-ups. In particular, the number of elements in the spectrum should be additive in an appropriate sense, giving a motivic measure.

An additional invariant ("dimension") will be introduced in the next lecture, giving a new criterion for non-rationality, which seems to be surprisingly close to the optimal one (see the talk by Ludmil Katzarkov later today).

There is a very optimistic conjecture, for which I do not have a really solid evidence (and which is completely out of reach now).

To simplify life, let us assume that the quantum connection is given by a convergent series.

Conjecture: for any point in \mathcal{M}^{alg} and a choice of disjoint paths from $-\infty$ to points of the corresponding spectrum (Gabrielov paths):

we obtain a semi-orthogonal decomposition $D^b(Coh(X)) = \langle \mathcal{C}_1, \dots, \mathcal{C}_r \rangle$ where r is the number of elements of the spectrum.

For X being a DM stack with a gerbe, modify $D^b(Coh(X))$ appropriately.

If X is compact, all categories $\mathcal{C}_1,\ldots,\mathcal{C}_r$ are saturated (i.e. smooth and proper), equal to local Fukaya-Seidel categories for the mirror LG dual $(Y,W:Y\to\mathbb{C})$, if it exists. In general, I expect that all \mathcal{C}_i are of finite type (in particular, they are homologically smooth).

Notice that one can choose *not a generic* point in \mathcal{M}^{alg} , then the number r of elements of the spectrum will be strictly smaller relative with the generic case. The semi-orthogonal decomposition associated with the non-generic point, is obtained form the generic one by combining several subsequent subcategories into one larger saturated subcategory.

In this conjecture all subcategories C_i are not phantoms, its Hochschild homology (which are \mathbb{Z} -graded vector spaces over the $\mathbf{k} \subset \mathbb{C}$) are non-zero.

One can omit the assumption of convergence, working over the field of Puiseaux series in an auxiliary variable which can be thought of as a small positive number.

I will not assume the over-optimistic conjecture on semi-orthogonal decompositions, but still try to extract more accessible corollaries.

Let $Y\subset X$ be a smooth closed subvariety of codimension $m\geq 2$, and denote by $\pi:\widetilde X\to X$ the blow-up of X with center Y. We have the following basic facts:

- ullet if X is "convex-at-infinity", then the same is true for Y and \widetilde{X} ,
- if $[\omega]\in H^2(X,\mathbb{Z})$ is an ample class, then $[\omega]_{|Y}$ is ample, $\pi^*([\omega])\geq 0$ and for sufficiently small $\epsilon>0$ class $\pi^*[\omega]+\epsilon c_1(T_{\widetilde{X}})\in H^2(\widetilde{X},\mathbb{Q})$ is ample,
- $ullet H^ullet(\widetilde{X})\simeq H^ullet(X)\oplus igoplus_{(m-1) ext{ copies}} H^ullet(Y)$,
- $\dim \mathcal{M}^{alg}(\widetilde{X}) = \dim \mathcal{M}^{alg}(X) + (m-1) \dim \mathcal{M}^{alg}(Y)$,
- $ullet D^b(Coh(\widetilde{X})) = \langle D^b(Coh(X)), \underline{D^b(Coh(Y)), \ldots, D^b(Coh(Y))}
 angle.$

Informal version of the Blow-up conjecture: the spectrum $\mathsf{Spec}_{\,\widetilde{X}}$ is close to

with (m-1) shifted copies of Spec_Y around one copy of Spec_X .

One year ago in Miami I talked already about Blow-up conjecture via certain "gluing", see notes of my lecture 2 on the webpage of the collaboration

https://schms.math.berkeley.edu/events/miami2020/#schedule

I'll sketch below a reformulation of the gluing in a slightly different way.

Let us endow X,Y,\widetilde{X} with semi-ample classes

$$[\omega], \quad [\omega]_{|Y} = (Y o X)^*[\omega], \quad \pi^*([\omega]) = (\widetilde{X} o X)^*[\omega]$$

respectively. The first two classes are in fact ample, and the third one still gives a well-defined series for the quantum product.

Operator $\mathbf{K}_{\widetilde{X},0}$, which is $\mathbf{K}_{\widetilde{X}}$ at point $0\in\mathcal{M}_{\widetilde{X}}^{alg}$, has spectrum

$$\mathsf{Spec}_{\widetilde{X},0} = \{0\} \sqcup \{z \in \mathbb{C} | z = (m-1) \sqrt[m-1]{1}\}$$

Meromorphic connection $\frac{ud}{du} + \frac{1}{u} \mathbf{K}_{\widetilde{X},0} + \mathbf{G}_{\widetilde{X}}$ over $\mathbb{C}[[u]]$ can be explicitly identified with the sum of connections corresponding to elements of $\mathsf{Spec}_{\widetilde{X},0}$.

The summand corresponding to z=0 can be explicitly identified with $\frac{ud}{du}+\frac{1}{u}\mathbf{K}_{X,0}+\mathbf{G}_X$, and with $\frac{ud}{du}+\frac{1}{u}\mathbf{K}_{Y,0}+\frac{z}{u}+\mathbf{G}_Y$ for $z=(m-1)^{m-1}\sqrt{1}$.

Meromorphic connection of the form $\frac{ud}{du} + \frac{1}{u}\mathbf{K} + \mathbf{G}$ where \mathbf{K}, \mathbf{G} are operators in a finite-dimensional (super) vector space, can be understood in certain sense as a connection with second order pole over $\mathbb{C}[[u]]$ and connection with first order pole on $\mathbb{C}[u^{-1}]$ glued along an identification on $\mathbb{C}((u))$ in such a way that the resulting super vector bundle over $\mathbb{C}P^1$ is *trivial*.

Now, let us deform by an isomonodromic deformations (parametrized by \mathcal{M}_X^{alg} and by copies of \mathcal{M}_Y^{alg}) connections over $\mathbb{C}[[u]]$ given by $\frac{ud}{du} + \frac{1}{u}\mathbf{K}_{X,0} + \mathbf{G}_X$ and (m-1) copies of $\frac{ud}{du} + \frac{1}{u}\mathbf{K}_{Y,0} + \frac{z}{u} + \mathbf{G}_Y$. Gluing to the same connection $\frac{ud}{du} + \frac{1}{u}\mathbf{K}_{\widetilde{X},0} + \mathbf{G}_{\widetilde{X}}$ over $\mathbb{C}[u^{-1}]$ we obtain again a trivial bundle over $\mathbb{C}P^1$.

One can read flat coordinates in a canonical way, and obtain a non-linear map

$${\mathcal M}_{\widetilde{X}}^{alg} o {\mathcal M}_X^{alg} imes ({\mathcal M}_Y^{alg})^{m-1}$$

Conjecture: the pullback of the flat connection on $\mathbb{P}^1_u \times \mathcal{M}_X^{alg} \times (\mathcal{M}_Y^{alg})^{m-1}$ to $\mathbb{P}^1_u \times \mathcal{M}_{\widetilde{X}}^{alg}$ coincides with those given by GW-invariants of \widetilde{X} .

This is a bit non-explicit description of the quantum product of X in terms of those for X and Y, and some data from the classical topology (restriction morphisms, cup-products on cohomology, and characteristic classes of normal/tangent bundles).

The Blow-up conjecture is still not proven (and not refuted).

I will finish this talk with the description of the strategy, which (I hope) can work. The main statement which I will try to prove is that the genus zero GW-invariants of \widetilde{X} are canonically determined in terms of those for X and Y and the classical data. Then the Blow-up conjecture will be reduced to certain formal identity.

Main idea: introduce a new manifold

$$\widehat{X}:=Bl_{Y imes\{0\}}(X imes\mathbb{P}^1)$$

It carries \mathbb{C}^{\times} -action by rescaling the canonical coordinate t on \mathbb{P}^1 . The locus of fixed points consists of 3 components $\widetilde{X} \times \{0\}$, $Y \times \{0\}$ and $X \times \{\infty\}$.

Now consider moduli spaces of genus zero curves on \widehat{X} of all possible degrees $\widehat{eta}\in H_2(\widehat{X},0)$ such that the image in $H_2(\mathbb{P}^1,\mathbb{Z})$ vanishes ("vertical curves").

The locus of fixed points in $\overline{\mathcal{M}}_{0,n}(\widehat{X},\widehat{\beta})$ consists either of curves in $X\times\{\infty\}$, or of trees of curves in $\widetilde{X}\times\{0\}$ and $Y\times\{0\}$ joined by cyclic covers of orbits of \mathbb{C}^{\times} -action connecting points of $\widetilde{X}\times\{0\}$ and $Y\times\{0\}$.

The sum of contributions of the fixed loci (by Bott formula) should have *vanishing* coefficients for *strictly negative* powers of the equivariant parameter. This gives an infinite bunch of identities, and there are good signs that these identities determine genus zero GW invariants of \widetilde{X} uniquely.