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ABSTRACT. In this paper, we will introduce Quantum Toric Varieties
which are (non-commutative) generalizations of ordinary toric varieties
where all the tori of the classical theory are replaced by quantum tori.
Quantum toric geometry is the non-commutative version of the classical
theory; it generalizes non-trivially most of the theorems and proper-
ties of toric geometry. By considering quantum toric varieties as (non-
algebraic) stacks, we define their category and show that it is equivalent
to a category of quantum fans. We develop a Quantum Geometric In-
variant Theory (QGIT) type construction of Quantum Toric Varieties.
Unlike classical toric varieties, quantum toric varieties admit moduli
and we define their moduli spaces, prove that these spaces are orbifolds
and, in favorable cases, up to homotopy, they admit a complex structure.




Classical toric geometry

The classical theory of toric geometry has found multiple applications

in the resolution of problems in various fields of mathematics going from
combinatorics to differential geometry.

Tori (both real and complex) are the building blocks of the classical the-
ory; indeed, a classical n-complex dimensional compact, projective Kahler
toric manifold X can be defined as an equivariant, projective compacti-
fication of the n-complex dimensional torus T% := C* x --- x C* (where

C*:=C\{0}).




The classical moment map.

Real tori also play an important role in the classical theory: the real torus
Tg =S'x--- xS CC*x---x C* = T acts holomorphically on the whole
of X D ']T%. Thinking of the Kahler manifold (X, g,.J,w) as a symplectic
manifold, the action of the real compact Lie group ']I‘ﬁfE on X is Hamiltonian,

implying thus the existence of a continuous equivariant moment map p with
convex image P:

p: X — P C R? = Lie(T%)*.

A priori, whenever X is compact, P is a compact, convex set but, for a toric
variety X, P turns out to be a convex, rational, Delzant polytope: that is.
the combinatorial dual of P is a triangulation of the sphere S9~!, and all
the slopes of all the edges of PP are rational.




The classical momento map (from
Notices of the AMS, January 2021).

The moment map for a toric manifold: the inverse
image of every point is a real torus of dimension equal to the
dimension of the stratum of P where the point lands. The in-
verse image of edges are spheres made up of 1-tori (circles). In
non.commutative toric geometry all tori and circles are replaced
by their non-commutative counterparts



FanNs

It is natural to consider P as a stratified space P = Py, 1 P, II --- 11
P, where FP; is the disjoint union of all facets of P of dimension i#; this
stratification is inherited by X via the moment map. To wit, the map
e Xi = p_l(ﬂ) — P; is a trivial real-torus bundle over P; identifying
X; with the product P; x Tﬁ'ﬁ, and so, X = (P x T%) ... (P x Tﬁf{)&
reconstructing then X as the disjoint union of real Lagrangian tori.

For more general toric varieties, fans (which can be thought in the poly-
topal case as the cone with vertex at the origin of the dual of the polytope)
are used rather than polytopes, but still, an ubiquitous use of complex and
real tori (often appearing in the theory in the guise of lattices on vector
spaces), and their partial compactifications, are the basis of the classical
theory.




The basic iIdeaq.

The basic idea behind the field of Quantum Toric Geometry is to replace
all the tori appearing in classical toric geometry by quantum tori (also known
as non-commutative tori): just in the same manner in which toric manifolds
can be thought of as integrable systems, our quantum toric manifolds can,
in turn, be interpreted as quantum integrable systems. And likewise, for the
same essential reason that a version of mirror symmetry for toric varieties
can be construed as a parametrized version of T-duality for tori, analogously,
quantum toric manifolds will have a version of mirror symmetry in which
the basic component is non-commutative 7-duality.




Deformation Quantization

From a slightly different point of view, quantum toric geometry can be
thought of as a deformation (with deformation parameter A) of the whole
field of toric geometry (say, as presented in [19]): while very many results
from the classical theory have their counterparts in our quantum generaliza-
tion, the proofs of such results are not entirely obvious. On the other hand,
the flavor of our theory is familiar, for we encounter the usual suspects:
quantum fans, quantum lattices, and the like. Furthermore, of course, the
classical theory is a particular case of the quantum theory, as it should be.

[19] David A Cox, John B Littlé, and HHéIiryHK Schenck. Toric varieties. American Math-
ematical Soc., 2011.



Thus, the basic building block of our theory is a non-commutative defor-
mation of the classical tori ']Tﬁ@ known as the quantum torus %g, ; (depending
on a ’real deformation parameter h): it is one of the most important and
basic spaces in the field of non-commutative geometry [17].

[17] Alain Connes. Non-commutative differential geometry. Publications Mathematiques
de I'IHES, 62:41-144, 1985.




The real guantum 2-torus.

The quantum 2-torus 77, € NCSpaces = NCAlgebras/~); (non-
commutative algebras up to Morita equivalence) is a good starting example,
its algebra Aj of smooth functions (in NCAlgebras) has two (periodic)

generators X, Y that don’t quite commute but rather satisfy the relation:
XY =™y X

The algebra Aj can be realized as an operator algebra first appearing in
quantum mechanics®. When we specialize the parameter i to be zero, we
obtain a commutative algebra and, in fact, 7{5 ey T2, recovering the usual
torus.

3In fact, this equation is precisely the classical Born-Heisenberg-Jordan commutation
relation [11], [10] ,” . in Weyl exponential form [50].

[10] Max Born, Werner Heisénberg, and Pascual Jordan. Zur-quahfenmechanik. ii.

Zeitschrift fiir Physik, 35(8-9):557-615, 1926.
[11] Max Born and Pascual Jordan. Zur quantenmechanik. Zeitschrift fir Physik,

2):1-46, 1927.

34(1):858-888, 1925.

[56] Hermann Weyl. Quantenmechanik und gruppentheorie. Zeitschrift fir Physik, 46(1-



The arithmetic dichotomy.

There is an important dichotomy for the parameter h; the space 7]13,;1 1S
truly non-commutative only when A is irrational; when h is rational, its
algebra of functions is Morita equivalent to a commutative algebra.



The Kronecker foliation.

A. Connes has pointed out a beautiful geometric interpretation for the
non-commutative space ﬂﬂé i it can be thought of as the space of leaves
of a foliation (see Section 6 of [1%]). The Kronecker foliation of slope A
on ’]T]%Q (depicted in Fig. 1) consists on taking the foliation of the Euclidean
plane R? and projecting it up by the translation action of the integral lattice
Z? C R?. This is the same as considering the image of R? (and its foliation)
into C? given by the map E, defined as:

E : (xz,y) — (exp(27mix), exp(27iy)),

and it is because of this that the exponential will play a fundamental role
in our theorv.

[18] Alain Connes and Matilde Marcolli. A walk in the noncommutative garden. An invi-
tation to noncommutative geometry, pages 1-128, 2008.



The Kronecker foliation.

F1GURE 1. The Kronecker foliation and its holonomy: the
thick line represents an interval of a leaf in the Kronecker
foliation going around once and thus defining a rotation from
the transversal vertical circle into itself. We will denote the
angle of rotation by h.



The holonomy groupoid.

Whenever i = p/q is rational, this is a foliation of the real torus Ty by
circles (actually (p,q)-torus knots) but, otherwise, each leaf winds densely
inside T%{.

As a first approximation, we think of the leaf space of the Kronecker
foliation as the quotient topological space T(h) := T3 /E(h) where E(h) :=
{E(x,hx) : x € R}) is the (possibly dense) leaf of the torus passing through
the origin; it is also a normal subgroup of 'I[‘I%{, and the quotient is taken in
the group sense. We could obtain the same quotient by considering only the
transversal circle (the vertical circle in Fig. 1 above). If p;: St — S is the
holonomy map that rotates the circle by an angle A, and (pj) is the discrete
group of rotations of the circle it generates (we have an infinite cyclic group
(pr) = Z whenever h is irrational, and a finite cyclic group otherwise), then
we have:

T(h) := Tr/E(h) = 5" /(pn),

again, a dichotomy ensues: either A is rational and T(h) is a circle (the
quotient of a torus by an embedded torus knot) or A is irrational and T(h)
is a non-Hausdorff topological space.



Stacks and non.commutative spaces

When, in general, ¥ = T'/ ~ is a non-Hausdorff topological space obtained
as the quotient of a manifold 7" divided by the action of a (possibly non-
compact) group (really, any equivalence relation ~ defined by a Lie groupoid
action on T'), there is, at least, two very fertile ways to enrich T preserving
some of the information of the geometric groupoid action on 7' (and landing
in nicer categories than that of possibly non-Hausdorff topological spaces);
(1) by using non-commutative algebras (taking the non-commutative quo-
tient as in section 4 of [15]), and (2) by using stacks (sheafs of groupoids [22]):
from (7', ~) (thought of as a topological groupoid), we can obtain three re-
lated objects; (a) a non-Hausdorff topological space, (b) a non-commutative
algebra A7, and (c) a stack .7. From these, .7 is the richer, it has more
information about the groupoid (7, ~) than the other two objects; then, by
applying the Connes convolution algebra mapping ([16] page 5):

[22] Dan Edidin. Communications-what is a stack? Notices of the American Mathematical
Society, 50(4):458-459, 2003. o

[16] Pierre Cartier. A mad days work: from Grothendieck to Connes and Kontsevich the
evolution of concepts of space and symmetry. Bulletin of the American Mathematical
Society, 38(4):389-408, 2001.



The stack for the guantum torus.

Groupoids - NCAlgebras

) )

Stacks — % NCSpaces

here, it is useful to remember that Stacks = Groupoids/~,; and that
NCSpaces = NCAlgebras/~ s, moreover, the descending arrows consists
in both cases in quotienting out Morita equivalences.

Let us consider the example of the quantum torus. Here we have:

(T}, E(R) —— Ay

! l

2 C
‘?R,h ' ) 77[%,)‘:,



Avatars for the guantum torus.

The dramatis personae of this commutative diagram are as follows:

(i) The (translation) Lie groupoid (T%, E(h)) whose manifold of objects
is the torus T% (which happens to be a Lie group), and whose arrows
(t,s) : t — t- s are pairs of elements in T x E(h).

(ii) The non-commutative algebra Ay (whose two generators satisfy XY =
e?mhy X).

(iii) The non-commutative space* 731% 1, hamely, the Morita equivalence class
[Ap]~,, of the algebra A;. We will call this the non-commutative torus

R,h*
(iv) The (non-separated, non-algebraic, smooth) stack ﬂgﬁ obtained by

stackification of (T%, E(h)). We will call this the quantum torus Q’R% .



The nc-rotus and the guantum torus.

Because of the remarkable properties of the category of stacks (for ex-
ample, the existence of fibered products), in this paper, we will always
use stacks® rather than non-commutative spaces: in principle all the non-
commutative geometry can be recovered from the stacky geometry although,
in practice, this may be not entirely trivial. We will return to this issue in
a future work. In any case, it is much simpler to state that, for instance,
ZCQ, » 1s a Kahler stack, than to try to say the same for its non-commutative

avatar 7?(”:2 -



The exponential isomorphism.

Our notation for stacky quotients uses brackets so that, for example, we
have:

Ten = [Tr/EM)] = [S"/{pn)],
and, from now on, we will always use the presentation .72, := [S'/(py)] for
the quantum torus. Actually, we will need to pass to the Lie algebra by
taking logarithms. Indeed, we will find convenient to use the exponential
group homomorphism (with kernel Z = (1)): E : z € R — FE(X) =
exp(2miz) € S, which, in turn, induces a map

E : [R/(L,B)] = [S"/{pn = E(W)) = 72,




The guantum lattice.

[':=(1,h) CR.

Sometimes I is called a quasi-lattice but, given our motivation, we will call it
a quantum lattice or, simply, a g-lattice. Clearly, I' behaves quite differently
whether h is rational or not: in the former case, I' really is a lattice in R,
for it is always the case that I' & Z. In any case, I' plays the role of the ‘Lie
algebra’ of the rotation group (pp):

E: T — (pn).
With this, we arrive at the logarithmic representation of the quantum torus:

Trr = [R/T.



The complex guantum d-dim torus.

There are two variations to the previous setting that we will need in our
theory. First, we will work mostly with complex quantum tori rather than
with real quantum tori (although Lagrangian tori will still be real):

Ten = [Te/E(h)] = [(C)/{pr)] = [C/T].

The second important variation arises from the fact that we will need to
work with tori of arbitrary integer dimension d + 1, so that, in general, we
define:

Tsar = FEE = [P/ B = [cY/r],

where I' is a ¢-lattice (namely, a finitely generated additive subgroup of
some R? spanning it over the real number field). We are to think of I" as the
holonomy of a linear foliation on 'I[‘fé“ analogous to that of Figure 1 (where
d=1and I' = (1,h)), of T4 as a transversal to the foliation, and of C? as
the universal cover to such transversal.



Quantum P1

The simplest example of a quantum toric variety is probably a quantum
projective line; just a projective line is an equivariant compactification of a
one dimensional complex torus:

CP' =C*u{0} U {oco},

the analogous statement is true for a quantum projective line (which is then,
in turn, a compactification of a quantum torus):

CZ = Jc.1.5U {0} U {o0}.




Quantum P1

below. Enough is to say here that we construct C#} with two charts,
both of the form [C/exp(2iwhZ)| (which is a partial compactification of
(C*/ exp(2imhZ)]), glued by the attaching map:

2] € [C*/ exp(2inT)] — [z71] € [C*/ exp(2im(-T))].

Notice that a quantum projective line C#} is a compactification of Z& -
You may want to imaginatively think that C (resp. R) is both the Lie algebra
and the universal covering of ZCQ’ 5 (resp. ZRQ, 1), and that wl(ﬂﬂg w = T,
but this would be off by one dimension (2 # 1) for the case h = 0. The

dimensions may, at first, look confusing to the reader. To clarify this possible
confusion let us mention that:




Dimension counting.

i) The ‘naive dimension’ of 91@2, » seems to be dimT? — dim E(h) =
2 —1 = 1. This is why we shift to the notation 1 rj := %{2’ 5 1n the
body of the paper.

ii) The ‘homotopy type’ of 7115, » is given by the homotopy quotient
T? x E(r) ER which in turn is homotopy equivalent to T? (for E(h) =

R is contractible), and hence has ‘homotopic-dimension’ two. The
same holds for ZCQ . This will be reflected in the periodic cyclic

homology of 7I'R?’h: from the homological point of view, it will look
like a two-dimensional space.




LVM manifolds appear...

iii) As mentioned above, a quantum projective line C#} is a compact-
ification of 9(:2, », and, indeed, it will also have a ‘naive complex
dimension’ of 1 and a ‘homotopic dimension’ of 2. Moreover, we
will describe a complex manifold N (known as a LVM-manifold cf.
Section 8 below) together with a foliation Fj (defined in Subsec-
tion 8.5) so that the groupoid (N, Fj) compactifies the Kronecker
groupoid (T%, E(h)) and the stack C#2} = [Nj/Fs] equivariantly
compactifies the stack ﬂé » = [TZ/E(h)]. The point here is that
the complex dimension of Nj is two (in fact N = Sl x 83 is a
complex non-symplectic Hopf surface®), and (in the irrational case)
the leaves of the foliation .#; are all isomorphic to C and hence, are
contractible. In this situation, the fact that C#?; = [N} /C] explains
both the naive and homotopic dimension countings for this quantum
projective line.



Classical torics as LVM foliations.

6Hmpf manifolds and the more generally, Calabi-Eckmann manifolds, are non-
Kihler manifolds. Topologically they are of the form S*"~ ' x S*"~! and they are defor-
mations of an elliptic, holomorphic fibration E — S**~ ! x §?m~! 5 P~ 1 x P! In
this example we are interested in the Hopf case n = 1, m = 2. Of course, P"* ! x P!
is a toric variety. The generalization of a Calabi-Eckmann manifold corresponding to a
general toric variety X are the LVM-manifolds as it is proved in [11].

[44] Laurent Meersseman and Alberto Verjovsky. Holomorphic principal bundles over pro-
jective toric varieties. Journal fir die Reine und Angewandte, 572:57-96, 2004.




Gerbes and Calibrations.

The case of rational A (say h = 0) requires more care, for here the
leaves of the foliation .%#; wind up on themselves and rather than
being copies of C, they become elliptic curves of the form S x S!
(indeed, the map Ny & S1x 83 — [No/Fo] & [No/S* x 81| = P! > §2
is the trivial constant map crossed with the Hopf fibration, with fiber
S1 x S1), and then the homotopical dimension of P! and the naive
complex geometric dimension coincide and are both equal to 1 (of
course). Notice here that the stack C#} = [No/C](2 [N/ Fr] = P1)
still has homotopical dimension equal to two, and we have a fibration

C* ~ BZ — CP} — P,

that is to say C} is a gerbe over P! with abelian band Z, which
explains the difference of dimensions by 1. We refer to this process
as calibrating P! to obtain CZ2}, the choice of calibration is by no
means unique (cf. Definition 4.9, Subsection 6.1 and Subsection
6.3. Here we are using a standard calibration as in Example 4.18).
In any case, it is easy to recover P! from C#2} (by forgetting the

gerbe) and vice-versa, C#} can be naturally constructed from is the
complex version of the ‘2-fold homotopy cover’ of P* (the complex

2-fold homotopy cover of S? is S x S3).




A simple guantum fan.

Recall that all the information to reconstruct CP! can be combinatorially
encoded by a fan in R! with three cones: {0}, R, and R_ together with
the integral lattice Z C R!. Likewise, all we need to reconstruct C2; is the
quantum fan consisting of three cones {0}, R, and R_ together with the
g-lattice I' C R*.



Quantum Fans.

FIGURE 2. A quantum fan (A,v) in I' is very similar to a
classical fan A in toric geometry, but instead of an integral
lattice, it is equipped with a g-lattice I' (cf. Definition 4.1).
Notice that we must mark the (non-canonical) ‘primitive vec-
tors’ (v1,...,vp) (all in I') on every ray of the 1-skeleton of
the fan. The fan A no longer needs to be rational.

A general quantum toric stack can be constructed starting from a general
(not necessarily rational) quantum fan (see Figure 2 and Definition 4.1):
such a g-fan carried a g-lattice I' € R?, and therefore defines a g-torus
Jear = [C4/T]. The quantum toric stack ZAr.w (cf. Definition 5.8) is an
equivariant compactification of J¢ 4 given by the data of the quantum fan

(A,v).




Calibrated guantum foric stacks

As explained before, we really want to consider the calibrated case (adding
gerbe degrees of freedom). At the level of fans, this is achieved by the
definition of a calibrated quantum fan. The precise description of a calibrated
quantum fan (depicted in Figure 3) is found in Definition 4.9 below. For
now, think of a calibration as a homomorphism h : Z" — I'. Given such a

calibrated quantum fan, then we define a Calibrated Quantum Toric Stack
in Definition 6.17 and denoted® by 2 Eﬂfi




A calibrated guanfum fan.

FIGURE 3. A calibrated quantum fan (A, h) is essentially a
quantum fan plus a calibration, namely, a homomorphism
h : Z" — I ‘determining the various Planck lengths of the
quantum system’ (cf. Definition 4.9).



Calibrated = uncalibrated + gerbe.

The relation between the calibrated Quantum Toric stack 2% C"’E n.y and
its un-calibrated version Za r, 1s explained in Proposition 6.20; ;5?’ m’f h.g 18
a gerbe over ZAr, with band Z* (where a := n — rankz(I')): 2 E“;i 5 1s
completely determined by a classifying map Zar, — BAL.

Proposition 6.20. The calibrated Quantum Torics 2 ga}i 7 15 a gerbe over

ZArw with band Z°*. In particular, if a = 0, %E“}i 7 and ZAr, are iso-
morphic.

Homotopically, such a gerbe is given by a map in the classifying space
BB(Z%), which is nothing else than (P*°)*. In other words, such a gerbe
defines a principal T® bundle over ZA r,, up to homotopy. We can describe
this bundle as h.



Quantum torics and gquantum fans

Let 2¢ pe the category of simplicial calibrated Quantum Toric Vari-
eties. Then 2° is equivalent to the category of quantum toric fans

Qcavl .



Quantum GIT

7.1. Quantum calibrated GIT. We first deal with the calibrated case.
So start now from a simplicial calibrated Quantum Fan (A,h) in I'. Set
vi = h(e;) for : = 1,...,n. We will show in this section how to construct
the calibrated quantum toric variety 2 ﬁf‘}i 7 as a quotient stack.

To do this, we make use of Gale traﬁsjforms, a classical tool in convex

geometry. We thus perform a Gale transform of v = (vq,...,v,), that is we
choose some vectors A = (Ay,..., A,,) of R"~% such that
(21 =(A1,1)
n
(7.1) h(x) = Z:I:w,,; =0 <= | : for some t € R"™¢
—
' | 7 =(Ap, 1)
This leads to a short exact sequence
(7.2) 0— s Rrd Ky gn R, pd___,

for

(7'3) k(tla st atn—d) - k(t) = ((Alzt>: "t (An:t))




Calibrated QGIT

Define

(7.5) rel, < z; #0.

and set

(7.6) S ={zeC"|{l,...,n+ 1} \ L, is a cone of A}

Lemma 7.3. The set . 1s an affine toric variety.

We let now C"~¢ 5 T act holomorphically on C" 3 z through
(7.9) T-z:=(5E((A.T)))i—
Note that

Lemma 7.5. Action (7.9) preserves . and commutes with the action of

T on ..
We denote by A this action and we form the global quotient [.#/A].



Calibrated QGIT

Theorem = The stacks |7/ A] and Z f’}i ; are isomorphic.



Uncalibrated QGIT

XK 2T A

where . is the complement in C" of a union of coordinate vector subspaces
and the classical torus T" acts multiplicatively on it with a Zariski dense
orbit (we denote by A this action). Moreover, A actually defines a foliation
on . so that the stackification of the holonomy groupoid of said foliation
is isomorphic to the un-calibrated toric stack Za r, (Theorem 7.10).

Theorem 7.10. The stackification of the holonomy groupoid G1 = G over
A 18 ZArw-



QGIT and LVM-theory.

From the point of view of QGIT, there is a déep and beautiful relation
beetween quantum toric stacks and LVMB theory (see section 8 for def-
initions). Such relation occurs only when n — d is even (cf. Definition
9.2). The reader may want to think for now of a LVMB-manifold (together
with a canonical foliation induced by a holomorphic C™-action) (N, F) as
a generalization of the Calabi-Eckmann manifolds (and their elliptic folia-
tion induced by a C-action, where C covers the elliptic curve) so that (cf.

Theorem 9.13):
Zarw = |N/F|

and

gﬁﬁﬂf =~ [N/C™].




Quantfum LVM = QLVM

Theorem 9.13. Let (S,A) and (A, h) as above. Then,

i) The stack [Np/FA| is isomorphic to the Quantum Toric Variety
ZAT -

ii) The stack [NA/C™| is isomorphic to the calibrated Quantum Toric
Variety 2 Eﬂ;i



Kahlerness (Uses Ishida’s results).

Theorem 10.2. A Quantum torics Zar., with A complete is Kahler if
and only if A 1is polytopal.

130] Hiroaki Ishida. Torus invariant transverse Kihler foliations. Transactions of the
American Mathematical Society, 369(7):5137-5155, 2017.



Unlike classical toric varieties which are rigid (as equivariant toric spaces),
quantum toric stacks admit moduli. In Section 11, the final section of this

paper, we study various moduli spaces, specially the moduli space ///tonc
of quantum toric stacks Wlth fixed combinatorial type D (and I'-complete),
the moduli space /{tom’ of calibrated Quantum Toric Stacks (of maxi-
mal length) and fixed combinatorial type D and the moduli space M,
of G-biholomorphism classes of LVMB manifolds (see Figure 4). -




Moduli spaces of guantum toric
stfacks.

FIGURE 4. Moduli spaces of quantum toric stacks: in (A)
we depict the moduli space of quantum projective lines: it
has only one orbifold point with stabilizer Zs corresponding
to the classical P! (or equivalently, to its non-commutative
avatar C}); for the case of P4, see Subsection 11.4. In
(B) we depict a more fanciful represen’ ..c.. .. .. _Juli

space ///Atg;;é’d of calibrated Quantum Toric Stacks with fixed
combinatorial type D: the orbifold points occur whenever
the fan suddenly has more symmetries (cf. Section 11). The
classical toric varieties will land on the rational locus of some

of these moduli spaces.



Moduli are orbifolds. Teichmuller.

Proposition 11.27. The moduli space M;Smn s the quotient of Ts by the
action of GL,—1(Z) described in |

We claim

Theorem 11.28. If the number k of indispensable points is less than m—+1,
then the moduli space M,‘,i’n can be endowed with a structure of a complex

orbifold.




Twistor complexification.

R(n—dﬁ/? N MS N t%f"D,n,d’

m,n toric
namely, Mﬁm is a (sometimes complex) orbibundle of even rank (n —d)?/2

over ﬂtggﬁ’d. This immediately implies the homotopy equivalence (a diffeo-
morphism when n = d):

S ~ Dnd
Mo = A, :

toric
. > D n.d

namely, the moduli space .Z ..
S

class) to a complex orbifold M¢ . Let us point out here that there is
an interesting analogy with the classical case of the moduli space of curves
M (g, n) where g is the genus (combinatorial information) and n is a marking
that makes the compactification of the moduli space nicer. Here too, we have
combinatorial information (D, d), and marking information n, making the
moduli space nicer, and even sometimes giving it a complex structure. We
will explore this analogy elsewhere.

can be promoted (in the same homotopy



