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Recall the basic structure of o
(compact) toric variety (over C)
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Recall the basic structure of o
(compact) toric variety (over C)
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INn general...

NON-COMMUTATIVE GEOMETRY INDOMITABLE

FIGURE 2. The moment map for a toric manifold: the inverse
image of every point is a real torus of dimension equal to the
dimension of the stratum of P where the point lands. The in-
verse image of edges are spheres made up of 1-tori (circles). In




What are non-commutative
spacese (Gelfand duality)

Theorem 5.1 (Gelfand Duality). The categories Spaces of Hausdorff compact
topological spaces and the opposite category to the category Algebras of commu-
tative C*-algebras are equivalent. Given a topological space X, its corresponding
algebra is the algebra C(X) of continuous complex valued functions on X with
pointwise multiplication.

Remark 5.2. Given a category C, its opposite category C°P? has the same objects
and the same arrows but s and ¢ exchange roles so that, in C°P, we have that s°P = ¢
and t°P = s.

In classical algebraic geometry, one starts with an affine variety X and one
produces a commutative algebra O(X) by taking its regular functions. Then, one
can go back to X by taking the spectrum of maximal ideals of O(X). A similar
but more delicate construction works in the case of a topological space X.




What are non-commutative
spacese

» On a commutative manifold, M, we have:
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» On a non-commutative manifold:
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Jsual torus vs. Non-commutative
torus aka guanfum torus.

» Usual torus:

xg = ar

D
» Non-commutative torus: \O/

e




Non-commutative spaces from
nature: bad quotient spaces.

» A perfectly good topological Hausdorff space can have a non-
Hausdorff quotient.

» This is typical behavior for M/G with G non-compact.

» Take, for example, the Kronecker foliation...



Constructing the Kronecker

foliation.




The Kronecker foliation.




Exercise.

» For RATIONAL slopes, the quotient is Hausdorff, and moreover, it is a
circle.

» For IRRATIONAL slopes, the quotient is non-Hausdorff, no longer @
manifold.

» We can profit from thinking of the second quotient as a non-
commutative space.



We need Groupoids, objects that
generalize groups actions (groups).

Definition 3.1. A category C = (Cy, C1, s,t) consists of objects Cy and arrows C
together with maps:
a) Two maps, s : C; — Cy and t : C; — Cy, called the source map and the

target map so that if for an arrow a € C; we have, s(a) = z and t(a) = y,
then we write

(8%
T—y

a:T —y.
b) The identity-arrow map
1:Co— Cq
assigning to every object x € Cj its identity arrow
i(z) : x — x,
L, =il
c) A composition law for arrows:
m: Cy X, C; — C}

Here C ,x, C1 consists of pairs of arrows («, 3) so that t(a) = s(5). The
composition law is only partially defined, namely, the domain of m is not
all of C; x C7 but only the subset C; ;x, C;. For the composition law, we
often write:

Boa:=m(a,p).



Associativity and commutativity

c) A composition law for arrows:
1t M v
m:Cy ,x,C; — Cy
Here C; ;x, C; consists of pairs of arrows («, 3) so that t(a) = s(5). The
composition law is only partially defined, namely, the domain of m is not

all of C1 x C'1 but only the subset C; ;x, C;. For the composition law, we
often write:
Boa:=m(a,ps).
These data satisfy the two strong algebraic conditions:
i) Associativity:
ao(Boy)=(aof)on,

following commutative diagram, § is well defined:

whenever s(a = t(3) and also s(3) = t(y). In other words, in the

«
r——=1

;

wW=——2
Y

ii) Identity: if
a:r—y
Then




Associaftivity (from n-Lab):

ho(gof)=(hog)of

(hog)of
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AssocCIafivity...
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https://wildtopology.wordpress.com/2012/10/30/the-
cech-expansion-i-nerves-of-open-covers/




Functors.

Definition 3.2. Given two categories (C, Cy,Ch, s,t) and (C’,C{,C1,s’,t') a func-
tor F' : C — C’ is a rule assigning objects in C to objects in C’ and arrows in C to

arrows in C’ and satisfying Fos=s5oF, Fot=t'oF, Foi=1 o F and:

F(aopB) = F(a)o F(B3).




Internal facts... (Logic).

Definition 3.3. Given objects x,y € Cj, we say that x is isomorphic to y in C and

write z = y if the is an arrow « : £ — y together with an inverse arrow a=! : y — z,

that is to say, we have: aoa™! = 14, o8 =1

Example 3.4. The category S = (Sp, S1, s,t) of all sets where Sy is the class of
all sets and S; the class of all mappings of sets. For two sets x,y, and a mapping;:

&:e—Fik

we set s(a) = x and t(a) = y. It is immediate to verify all the necessary algebraic
conditions, and so, § is a category.

This category has many subcategories of importance, for example, the category
of all groups G = (G, G1), where G is the class of all groups and G is the class
of all group homomorphisms.




Natural fransformations.

Category theory was discovered by S. Eilenberg and S. Mac Lane in the years
of 1942-1945 and first appeared fully formed in their 1945 classical paper General
Theory of Natural Equivalences [11] (very much under the influence of E. Noether,
one of Mac Lane’s teachers). In this work, the concept of category was mostly
auxiliary, for the developments of homological algebra in algebraic topology had
motivated Eilenberg and Mac Lane to understand systematically the concept of
natural transformation.

Perhaps the best way to think of a natural transformation n : F = F’ from a
functor ' : A — B to a functor F' : A — B is as a homotopy from F to F’. To
make sense of this, it is useful to define the unit interval category J as the category
having two objects 0 and 1 and three arrows (only one being a non-identity arrow)
depicted below:




Natural fransformations as
homotopies.

Definition 3.5. A natural transformation n from F to F’ is a functor

n: AxJ — B,

so that F' = n|4xo and F’ = n|4x1.- When such a natural transformation exists,
we write n: F = F”.




Natural equivalences (think of
homotopies).

It is natural to define the composition (concatenation) non’ of natural transfor-
mations by considering the double interval category which contains 7:

]-l"i ]_]_.r".l

ﬂﬂﬂ

0 ——=1/2——1

\M/

Definition 3.6. We say that (n: F — F',n : F' — F) are a natural equivalence
(homotopy equivalence) of categories, and we write A ~ B if the concatenations
non’ and n’ on send ¢ to the identity transformations 1z and 1z respectively.




Equivalent categories are like
homotopy equivalent spaces...

have vastly different number of objects. In fact, intuitively, if A ~ B, then B can
be obtained from A by means of a intermediate category C:

A<— C ——=B

Both arrows induce equivalences, and the left arrow (resp. the right arrow) can
be obtained from A (resp. B) by deleting objects of A (and all arrows starting or
ending in the deleted object) (resp. deleting objects of B) making sure that C still
has, at least, one object in every isomorphism class of objects in A (resp. B); the
left arrow thins out .4, and the second arrow fats up C to obtain B. The diagram
above is important, for it is an archetype for non-commutative geometry: we will
see this later, when we talk about bi-bundles.

Example 3.7. Consider the category )V of complex n-dimensional vector spaces
together with linear isomorphisms. It is not hard to see that this category is
equivalent to the category [e/GL,,(C)] which has just one (abstract) object o, and
n X n invertible matrices as arrows with multiplication as its composition law.
Notice that (by definition) every arrow in both categories has an inverse.




Groupolids

Definition 3.8. A category G = (Gy, G, s,t) in which for every arrow a : x — y
there exists an inverse arrow o~ ! : y — z, namely an arrow so that:

—1 —1
aoca =1,, a oca=1,,

is called a groupoid.

Example 3.9. Every group G can be made into a groupoid [¢/G] := ({e}, G, s, 1)
(for s and t the constant maps G — {e}) by considering the category [e¢/G| with
one (abstract) object  and an arrow g for every element g € G. Given two arrows

~

G:e—eand h:e— e (for h,g € G), we define:
goiz::g-h.

Example 3.10. Every equivalence relation can be made into a groupoid. Consider
a set I and R C I x I an equivalence relation on I (R is the set of pairs (7,7) so
that 7 is related to j). Then, we can define a groupoid [I/R] := (I, R, s,t) writing
8(%;7) =1, t4, 7] =7 and

(2,7) 0 (4, k) := (i, k).

The verification of the claim that [I/R] is a groupoid is immediate.




Group Actions produce Groupoids

Example 3.11. Every group action G x M — M of G on M can be made into a
translation groupoid (M /G| := (M, M x G, s,t) by writing s(m, g) = m, t(m, g) :=
g - m and

(gm, h) o (m, g) := (m, hg).

For the purposes of geometry, it is useful to restrict our attention to small cate-
gories (which do not include the category of sets).




Lie Groupoids

Definition 3.12. We say that a category C = (Cyp, C1, s, t) is small if both Cy and
(', are sets.

Definition 3.13. Given an object x in C, for C a small category, the set of invertible
arrows ¢ : * — x forms a group called the automorphism group of x in C.

The main source of non-commutative spaces are groupoids that have a geometric
structure, namely, topological and Lie groupoids.

Definition 3.14. A topological (resp. Lie) groupoid is a small groupoid G =
(Go, G, s,t) so that Gy and G are topological spaces (resp. Hausdorff smooth
manifolds) and all structure maps s,t,m,i are continuous (resp. smooth).




Ftale Groupoids.

Definition 3.16. We say that a smooth map of manifolds f : M — N is étale if it
is a local diffeomorphism; that is to say f is both a submersion and an immersion.
We say that G = (Gg, G, s, t) is an étale Lie groupoid if s is étale.

In fact, the main examples that we will consider in this note (foliation groupoids)
can be made to be étale [10,17] (e.g. the non-commutative torus below).

Example 3.17. A Lie groupoid G := [M /G| (usually called a translation groupoid)
is étale whenever (G is discrete.

Example 3.18. A choice of an atlas (U;); for a manifold M, gioves rise to an étale
groupoid U := (LL;U;, 11(; jyU;j, s,t), where
L, U; == {(mz)\m = Uz} (m .
sy Uy o= {(mm € Ui 03 J .
s(m,1,7) :==(m,1), ( ‘/S
t(m,i, j) == (m, ), )
(m, j, k) o(m,i,j) := (m,i, k).




Morita equivalence.

We need a geometric version of the equivalence of groupoids that corresponds to
the equivalence of categories of the previous section:

Definition 3.19. Given two Lie groupoids H = (Hy, H1, s,t) and G = (G, G, s, 1),
a morphism ¢; : H; — G;, 1 = 0,1, is an essential equivalence if

i) ¢ induces a surjective submersion (y, g) — t(g) from

Hy xg, G1 = {(y,9)|o(y) = s(9)}

onto Hy; and
ii) ¢ induces a diffeomorphism h — (s(h)¢(h),t(h)) from H; to the pullback
H() X'Gé Gl XGo H().




Finally... Stacks!

We say that two Lie groupoids G’ and G are Morita equivalent if there exists a
Lie groupoid H and two essential equivalences G < H — G’ (and we will say that
H is a G-G'-bi-bundle). The equivalence class G of the groupoid G under Morita
equivalence is called the C°°-stack associated to G.

Example 3.20. Given a fixed manifold M and two atlases (U;) and (V;), then the
two associated étale groupoids I/ and V are Morita equivalent if and only if the
atlases are equivalent in the atlas sense. Thus, M itself is the stack associated to

U (and V):

M>=UY2V.



Stacks associated to foliations.
(Think of the Kronecker foliation).

Example 3.21. Consider a foliated manifold (M, F) with ¢ the codimension of
the foliation. The holonomy (or foliation) groupoid H = Holo(M, F) has as objects
Hy = M, and two objects z,y in M are connected by an arrow if and only if they
belong to the same leaf L; arrows from z to y are in correspondance to homotopy
classes of paths lying on L starting at x and ending at y. The foliation groupoid

H = Holo(M, F) is always Morita equivalent to an étale groupoid for if we take an
embedded g-dimensional transversal manifold 7' to the foliation that hits each leaf
at least once then the restricted groupoid H|r is an étale groupoid, and, moreover,
it is Morita equivalent to H = Holo(M, F) [17].

[17] L. Moerdijk and J. Mréun, Introduction to foliations and Lie groupoids, Cambridge Studies in
Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261




Convolution algelbras.

It is time to explain how to obtain a non-commutative algebra out of a groupoid.

Definition 4.1. Given an étale groupoid G, we associate to it a non-commutative
algebra Ag, the convolution algebra of G; its elements are compactly supported
smooth complex valued functions on the manifold G; of arrows of G, f: G; — C.
The convolution product f x g of two functions is given by:

(f*g)(a)= Y f(B

Boy=a

where the sum is well defined because it ranges over a discrete space (G is étale) and
finite because the functions are required to be compactly supported. The algebra
Ag can be made into a C'*-algebra. In general, Ag is a non-commutative algebra.




Examples.

Example 4.2. Consider a (discrete) group G, the convolution algebra of the
groupoid [e/(G] is exactly the same as the group algebra of G.

Example 4.3. Consider now the Heisenberg groupoid [I/I x I| from matrix me-
chanics. Its convolution algebra is a matrix algebra:

fl[j'/jxj] = h"ia-t-n.){n. ((C),

where n is the cardinality of I.




2-categories

The category of all categories is actually a 2-category: it has objects, and for
every pair of objects z, y, the family of arrows going from x to vy is itself a category.
An arrow 1 : @« — 3 between arrows is referred to as a 2-arrow.

There are two 2-categories that are of great importance in non-commutative

geometry: the 2-category of groupoids and the 2-category of algebras. Due to
space considerations, I am all but ignoring the analytical issues concerning C™*-
algebras, which is too bad for it is a very important ingredient in the field; in any
case, we will be working only at the formal level from now on.




The 2-category of groupoids.

(G1) Objects: groupoids.

G2) Arrows: (smooth) functors.
(G3) 2-arrows: natural transformations.




The 2-category of hon-
commutative algebras.

Al) Objects: associative (possibly non-commutative) algebras.
A2) Arrows: bimodules over algebras.

A3) 2-arrows: bimodule morphisms.



Morita equivalence of algebras.

Observe that a morphism A — B of algebras is not an algebra homomorphism
but rather a bi-module 4 Mpg. The composition of two arrows (bimodules) is given
by:

BMc o aAMp := aAMp ® gpMc.
The notion of isomorphism of algebras in this category is called Morita equivalence
of algebras.

Definition 4.4. Two algebras A and B are Morita equivalent iff there is an A-B-
bimodule M, and a B-A-bimodule N so that M ®@p N = A (as A-A-bimodules), and
N ®a M = B (as B-B-bimodules). Equivalently, A and B are Morita equivalent if
and only if their categories of modules A-Mod and B-Mod are equivalent.

Example 4.5. Two commutative algebras are Morita equivalent iff they are iso-
morphic.




Non-commutative spaces from
Stacks.

The important point [18] is that there is a convolution 2-functor:
Groupoids —> NCAlgebras,

that, when restricted to objects, sends G to its convolution algebra Ag.
This implies immediately that (for étale groupoids) if the groupoid G is Morita

equivalent to G’ (as groupoids), then the algebra Ag is Morita equivalent to Ag (as
algebras): the Morita equivalence class Ag only depends on the stack G and not on
the groupoid. But two completely different stacks could have the same convolution
algebra.




Examples.

Example 4.6. Given a compact manifold M and an atlas (U;), the (non-commutative
convolution algebra A, of the groupoid U associated to the atlas is Morita equiv-
alent to C(M) the algebra of smooth complex valued functions on M which is
commutative.

Example 4.7. Consider the groupoids G; = [e/Z] and Gy = [Z/{1}]. The first
one is connected, while the second has infinitely many components; therefore, the
groupoids G; and G- are not Morita equivalent; nevertheless the Fourier transform
F: Ag, — Ag, i1s an isomorphism and, therefore, a Morita equivalence. This shows
that the convolution 2-functor forgets information. This is a feature rather than a
bug in non-commutative geometry.

Example 4.8. The Heisenberg groupoid [I /I x I| is Morita equivalent to the trivial
groupoid [e/{1}]; therefore, the non-commutative matrix algebra Mat,, ., (C) is
Morita equivalent to the 1-dimensional commutative algebra C.




The category of non-commutative
spaces and its relafion 1o Stacks.

Remark 5.3. The category Algebras is the same as the category Algebras/~j,
where we have inverted Morita equivalences as two commutative algebras are Morita
equivalent iff they are isomorphic.

We are finally ready to define non-commutative spaces.

Definition 5.4. The category of non-commutative spaces NCSpaces is the op-
posite to the category NCAlgebras/~ ), of possibly non-commutative algebras up
to Morita equivalence.

This definition extends Gelfand duality into the non-commutative realm:

Spaces — = Algebras®?

l l

NCSpaces «—— (NCAlgebras/~;)°P
Also, the convolution functor becomes a well defined functor:
Stacks — NCSpaces.
In fact, we have:

Groupoids - NCAlgebras

) )

Stacks — % NC Spaces

where Stacks = Groupoids/~); and NCSpaces = NCAlgebras/~ ;.




Non-commutative rational
fopology.

Definition 6.1. The Hochschild complex Co(A, A) of A is a negatively graded
complex (we wil have all differentials of degree +1):

O ARAQRARA - AAA- S A4 -2 A,

where A®" lives on degree —k + 1. The differential 0 is given by

Napg® - Rap) =apa1 ®a2 - Rap —ap Raras R --- R an

+ ...+ (—1)“_1(10 X aq XX Ay 10p -+ (—1)?1'(5_,?1(1,0 5%9) a @ - Ayp—1 -

The terms of this formula are meant to be written cyclically:

for ap ® --- ® a,,. It is immediate to check that 9% = 0. We write

HH(A, A) := Ker 9/Im 0.




Hochschild-Konstant-Rosenberg

We can interpret the homology of the Hochschild complex in terms of homological
algebra:
HH(A, A) = Torl@xA™—mod( 4 4),
It is an idea of A. Connes that, in non-commutative geometry, the Hochschild
homology of A can be interpreted as the complex of differential forms:

Theorem 6.2 (Hochschild-Konstant-Rosenberg, 1961, [13]). Let X be a smooth
affine algebraic variety, then if A = O(X), we have:

HH;(X) := H (Cs(A, A);0) = Q(X)
where (X)) is the space of i-forms on X.

Proof. Write the diagonal embedding X 2 XxX and, because the normal bundle
of A is the tangent bundle of X, we have:
HH, (X) _ Torsguasi—cohcrcnt(XxX) (O;’_\a O&)

A local calculation finishes the proof. [l

The Hochschild-Konstant-Rosenberg theorem allows us to interpret H H;(A) as
the space of differential forms of degree 7 on a non-commutative space.




Connes B differential.

Whenever A is non-commutative, we have:
HY(Co(A,A);0) = A/[A, A].

In the commutative case A = O(X), to an element ag ® --- ® a,, in Ce(A, A),
the corresponding differential form is: %agdal A...Nday.

It is convenient to mention a reduced version of the complex CI¢®¢(A, A) that

computes the same cohomology; it is obtained by reducing modulo constants all
terms but the first:

L ARA/(k- 1)@ A/(k-1) — A A/(k-1) — A.

Alain Connes’ observed that we can write a formula for an additional differential
B on C,(A, A) of degree —1, inducing a differential on HH,(A) that is meant to
be the de Rham differential:

Blag®a1 ® - ®an) = ) (1)1 () @+ ® ag(n)

a




Cyclic Homology

B*=0, BO+0B=0, 9°=0,
this we write as:

B B
I AQA/1R AT T _A®A/T
0 e d

and by computing the cohomology, this gives us a complex (Ker d/Im 9;B). A
naive definition on the de Rham cohomology in this context is the homology of this
complex Ker B/Im B.




Periodic cyclic homology

We can improve this by considering the negative cyclic complex C, (A), which
is a projective limit (here u is just a formal variable of degree deg(u) = +2):

Cy = (C*(A, A)[[u]]; 0+ uB) = lim(C;** (A, A)[u] /u™; 0 + uB).

N

Definition 6.3. The periodic complex is defined as the inductive limit:

C" = (C(A, A)((w); 0+ uB) = lim(u™"CF(A, A)[[u]]; 0 + uB).

1

It is a k((u))-module, and this implies that multiplication by u induces a kind
of Bott periodicity. The resulting cohomology groups called (even, odd) periodic
cyclic homology and are written (respectively):

HPCVCH(A): HPDdd (A)

This is the desired replacement for de Rham cohomology.



Examples.

For example, when A = C°°(X) is considered with its nuclear Fréchet algebra
strcuture, and taking ® to be the topological tensor product, then we obtain the
canonical isomorphisms:

HP.en(A) =2 HY(X,C)® H*(X,C)® - -

HP,4a(A) 2 H(X,C)o H3(X,C) @ - - -

Theorem 6.4 (Connes, (5], cf. Feigin-Tsygan, [12]). If X is a possibly singular
affine algebraic variety and Xy, is its underlying topological space then:

HE onlA) 2 B> (Xipp, L)

HP,qa(A) = H°(X;0p,C)

and these homologies are finite-dimensional.

As expected, whenever A is Morita equivalent to B, then HP,(A) = HP,(B);
in other words, H P,(A) only depends on the non-commutative space represented

by A.




The non-commutative torus.

» As a non-commutative algebra:

The quantum 2-torus 7,2 € NCSpaces = NCAlgebras/~; corresponds under
Gelfand duality to the algebra Ap generated by two (periodic) generators X, Y that

don’t commute but rather satisfy the relation:

XY = 2™ rYy X.

» This is the exponential of the classical Born-Heisenberg-Jordan
relation in classical guantum mechanics.



Quantum Torus

The algebra Aj is only truly non-commutative when £ is irrational; When A is
rational, while Ay is non-commutative on the nose (except for 2 = 0), it is, in reality,
Morita equivalent to the commutative algebra of an ordinary torus (XY = Y X).

Theorem 7.1 (Alain Connes [4], cf. Marc Rieffel, [20]). Ap is Morita equivalent
to Ay if and only if:

h+b
h’:aJr? . Z)GSLQ( ).

One can also prove that:

HP,.on(Ap) = HY(T?) ® H*(T?),

and

HP.,q4(Ap) = HY(T?,0C).




The Quantum Torus and the
Kronecker Foliation.

It is a beautiful discovery of Connes |9] that the non-commutative torus can
be thought as the non-commutative space that models the space of leaves of the
Kronecker foliation. The universal covering of the classical torus is the Euclidean
plane, by taking the foliation of all lines of slope A on the plane and projecting it
into the torus by the covering map, we obtain the Kronecker foliation of slope A on

T? (Figure 1). By taking a vertical transversal circle to the foliation, it is easy to
see that the holonomy groupoid of this foliation is [S'/(pr)] where pj acts on S* by
a rotation of angle A (cf. the think line in Figure 1). In section 6 of (9], it is shown
that the convolution algebra of [S!/(ps)] is Ay (it is a nice exercise using Fourier
series that the interested reader may try).
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Quantum Toric Geometry (joint with
Katzarkov, Meersseman and
Verjovsky.

Classical n-complex dimensional compact, projective Kahler toric manifolds X
are defined as equivariant, projective compactifications of the n-complex dimen-
sional torus Tg :=C* x --- x C*:

X::']T_g.

An interesting question, even from a classical point of view, would be: How to
define a meaningful moduli space of toric manifolds? The main problem being that
toric manifolds are rigid as equivariant objects. Non-commutative geometry helps
elucidate this question in a surprising beautiful way.




The moment map of a toric variety
IS made up of torl.

p: X — P C R* = LieAlgebra(Tg)*.

For a toric variety X, P happens to be a convex, rational, Delzant polytope: in
other words, the combinatorial dual of P is a triangulation of the sphere S¢~!, and
all the slopes of all the edges of P are rational. By taking cones over the origin of

the dual to the polytope, we get the fan associated to the toric manifold




The gist of guantum ftoric geometry.

In [15], classical toric geometry is generalized: by replacing all the classical tori
in toric geometry for non-commutative tori, one can obtain non-commutative toric
varieties. Now the (possibly irrational) fan (or possibly irrational polytope) no
longer lives in Q", but rather lives in (a possibly irrational) quantum lattice I' C R”

(T" is a finitely generated possibly dense Abelian subgroup of R" as it may have
more than n generators over Z).

[15] Ludmil Katzarkov, Ernesto Lupercio, Laurent Meersseman, and Alberto Verjovsky, Quantum
(non-commautative) toric geometry: Foundations, arXiv preprint arXiv:2002.03876 (2020).




The moduli space.

Then, a moduli space of toric varieties M can be defined (fixing the combi-
natorics of the polytope or fan). In a large family of favorable cases the moduli
space M is a complex orbifold: its rational points are precisely the classical toric
varieties, and its irrational points are precisely the truly non-commutative toric va-

rieties. Non-commutative geometry is precisely what is needed to define a nice
moduli space of toric varieties.

Just as classical toric geometry has been used in the solution of multiple problems
in geometry, physics and combinatorics, non-commutative toric geometry allows
many of these solutions to generalize to wider settings.




