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Consider a spectral curve Σ ⊂ T ∗X viewed
as a multivalued differential 1-form that is
locally the collection ϕ1, . . . , ϕr .



For us, it is going to be given by the equation

p3 = (dz)3

with solutions ϕi = ωidz , ω = −1+
√
−3

2



The differentials ϕij = ϕi − ϕj define real
foliations <ϕij = 0.
In our case there are three foliations whose
leaves make angles of 60◦.



Gaiotto-Moore-Neitzke define a spectral
network to be a graph on X whose edges
follow the leaves of these foliations, with
appropriate labels, and allowing collisions :



A spectral network with 3 collisions



Kontsevich program : interpret spectral
networks as special Lagrangians.
The notion of special Lagrangian is defined
when we have a holomorphic form of top
degree.
In our case, it is the tautological 2-form on
T ∗X .



A second aspect : we take a limit of rescaling
the symplectic form on the fibers
(Kontsevich, StringMath-2016).
Then, special Lagrangians look locally like
special Lagrangians in the fibers, over special
Lagrangians in the base.



We look at Lagrangians with boundary on Σ.
Locally on a spectral network away from a
collision, over an edge labeled ij we put the
segment from the i -th to the j-th point in
the spectral covering.



The Lagrangian upstairs



The limiting theory becomes the Fukaya
category of Lagrangians in X with
coefficients in the Fukaya-Seidel category of
the fiber.
In the spectral curve case the fiber is
(C, n points).



For us n = 3, the fiber category is therefore
A2, the category of representations of the
“quiver” with a single arrow.

Furthermore, we are going to restrict to a
special case where the base is just the
complex plane, relative to a finite collection
of boundary points

X = (C, {p1, . . . , pk})



Fukaya categories with coefficients

Suppose we are given a fiber category D
that is a dg-category.
Suppose we are given a graph G ⊂ X with
endpoints on the given subset of marked
points.
Let O = k[[ta]]a∈R,a≥0 so K = Frac(O) is
the Novikov field.



We get the Fukaya category F(G ,D) of
objects over G with coefficients in D , an
A∞-category over the ring O. We are
interested in F(G ,D)⊗O K.

For later, the family of categories—that is
here just a constant family with fiber
D—could really be a “perverse schober”
over X . It happens for example if the
spectral curve Σ/X has ramification.



The other basic ingredient is a stability
condition on D with coefficients in the
cotangent bundle of X .
In the present case it is just a usual stability
condition constant over the plane, but one
should bear in mind that the phases of fiber
objects need to be considered relative to
directions in the base.
In practice it means that the “total phase” is
the sum of the fiber phase minus the angle of
a curve in the base.



Our fiber category is D = A2. It is already a
Fukaya-Seidel category of Lagrangians in the
plane relative to three points.



The objects of D are direct sums of shifts of
three basic objects a, b, c that fit into an
exact triangle

a → b → c → a[1].

The standard stability condition on D has
a, b, c stable objects of phases 0, π/3, and
2π/3 respectively.
The maps in the exact triangle increase
phase by π/3.



A spectral network is now considered as an
object of F(G ,D). The underlying graph is
contained in G and we label those edges by
the objects a, b, c depending on the labeling
of the spectral network.
The “special Lagrangian” condition says that
the total phase, sum of the phase of the edge
in the base minus the phase of the edge in
the fiber, should stay constant.





At a 3-fold vertex of the graph, we have an
exact triangle relating the 3 labeling objects.
For an object of F(G ,D) one requires the
information of a strict triangle at each
vertex. More generally it could be an A∞
functor from the category A2 to D .



Construction of F(G ,D)—heuristics :
–Use direct sums of morphism complexes at
the vertices of the graph. The thin-disk
version counts only infinitely thin disks along
G , getting a Morse-theory complex that
calculates the colimit of D over the graph.
–The higher-order corrections from big disks,
with coefficient tArea, can be written down
explicitly in the thin-disk complex.
–Abouzaid’s verification of the A∞ relations
carries over here.



Construction of F(G ,D)—current version :
–Choose a full system of arcs for the graph
G . The arcs don’t intersect away from the
boundary points.
–An initial dg-category has objects : arcs
provided with objects of the fiber category.
Morphisms include wrapping maps going
counterclockwise when arcs intersect at the
boundary.



–Then look at twisted objects provided with
Maurer-Cartan elements with coefficients in
the Novikov ring O.
–The MC coefficients are allowed to have
nonzero constant terms in the wrapping
maps.
–These express the triangles at vertices of
the graph as multiply iterated cones.

More details tomorrow !



Set
F(X ,D) = lim→ F(G ,D).

This is an A∞ category over the Novikov ring
O. It has two projections

F(X ,D)
↙ ↘

F(X ,D)⊗O k F(X ,D)⊗O K



Conjecture :There exists a stability
condition on

F(X ,D)⊗O K

whose semistable objects of phase ϕ are
exactly the objects admitting liftings to
F(X ,D) whose projections to the residue
field are spectral networks of total phase ϕ.



This is viewed as a generalization of the
Bridgeland-Smith theorem, their theorem
concerns the case of fiber category A1.

This viewpoint is inspired by the IHES paper
of Haiden, Katzarkov and Kontsevich.



We are going to look at the case where the
fiber category is A2 and the base space is

X =
(
C2, {1, µ, µ2, µ3, µ4, µ5}

)

with µ = 1+
√
−3

2 .



That is to say, we have 6 points arranged on
the vertices of a regular hexagon.
The category F(X ,D)⊗O K is the category
of representations of the A5 quiver, in
representations of the A2 quiver, over K.
That is why we call this “A5 ⊗ A2”.



Ueda : we know mirror symmetry for this
case.
The mirror (on the B-side) is the stack
quotient of a special elliptic curve by its
automorphism group Z/6Z.
The stack quotient is P1 with three orbifold
points of degrees 2, 3, 6 respectively.



Therefore, we expect the moduli space of
stable objects of a given phase to be a P1

with three special points.
This is the behavior we’ll see with spectral
networks.



–One can draw all the spectral networks.
–They correspond in a nice way to the stable
objects on the B-side.
–There are spherical functors transporting
objects between phases.
–These functors on the A-side transport the
pictures in the same way.



–This can be made into a proof of the
conjecture for our example A5 ⊗ A2, we are
currently finishing to check and write it up.
More on the proof tomorrow.
Today we’ll look at how the pictures work.



A general spectral network at the principal
phase



Limit as the area of the hexagon goes to 0



Limit as the area of the hexagon becomes
maximal



At the maximal point it splits into 6 spectral
networks with extension classes relating them



At the minimal point, one way is to split as a
sum of two collisions with an extension class



At the minimal point, the other way is to
split as a sum of three straight lines



These splittings at the special points
correspond to the fact that on the B-side,
the limit of an indecomposable skyscraper
sheaf going towards an orbifold point will
split up into 2, 3 or 6 summands.
The same occurs in the moduli spaces for all
the phases, indeed these moduli spaces are
isomorphic by the spherical functors.



We now start to modify towards spectral
networks of other phases

(rotate the 6 endpoints instead of the edge angles)



The modified one has a corresponding
minimal limit



And a corresponding maximal limit



At the maximal limit we can again split into
6 spectral networks



At the minimal limit we can again split into 2
spectral networks stemming from collisions



Or 3 spectral networks stemming from lines



For the next step there is a choice of
direction, here we go two steps to the left

and one to the right



Alternatively we can go two steps to the
right and one to the left



Here is the left development followed by
another leftward step



Here is the left development followed by a
rightward step



At each stage there is the minimal limiting
picture



And the maximal limiting picture



Again the maximal limiting picture allows us
to split off 6 spectral networks like the one

pictured here



Similarly the minimal limiting picture allows
us to split off two spectral networks with a

collision at the center



And three spectral networks with a straight
line at the center—note the multiplicities
that are highlighted by coloring everything



We close with a picture of how the various
spectral networks fit into pictures of the
Berkovich spaces for the moduli P1’s




