RATIONAL POINTS, RATIONAL CURVES, RATIONAL VARIETIES

RATIONAL AND INTEGRAL POINTS

We study solutions of diophantine equations:

• rational points = (nontrivial) rational solutions of equations, e.g.,

elliptic curve

 $x^3 + y^3 + z^3 + t^3 = 0$

cubic surface

RATIONAL AND INTEGRAL POINTS

We study solutions of diophantine equations:

• rational points = (nontrivial) rational solutions of equations, e.g.,

• integral points = integral solutions of nonhomogeneous equations, e.g.,

$$\underbrace{x^2 + y^2 + z^2 = 3xyz}_{\text{log-K3 surface}}, \qquad \underbrace{x^2 + y^2 + z^2 = c}_{\text{log-Fano surface}}, \quad c \in \mathbb{N}.$$

BALAKRISHNAN, ... (2018)

The only rational points on the curve

$$y^{2} = -4x^{7} + 24x^{6} - 56x^{5} + 72x^{4} - 56x^{3} + 28x^{2} - 8x + 1.$$

are

$$(0, -1), (0, 1), (1, -1), (1, 1).$$

Euler's conjecture (1769)

$$\underbrace{x_1^n + x_2^n + \dots + x_{n-1}^n = x_n^n}_{\text{Calabi-Yau}}, \qquad n \ge 4,$$

has no nontrivial solutions in $\mathbb Q.$

Euler's conjecture (1769)

$$\underbrace{x_1^n + x_2^n + \dots + x_{n-1}^n = x_n^n}_{\text{Calabi-Yau}}, \qquad n \ge 4,$$

has no nontrivial solutions in $\mathbb Q.$

Counterexample n = 5:

(27, 84, 110, 133, 144)

Euler's conjecture (1769)

$$\underbrace{x_1^n + x_2^n + \dots + x_{n-1}^n = x_n^n}_{\text{Calabi-Yau}}, \qquad n \ge 4,$$

has no nontrivial solutions in \mathbb{Q} .

Counterexample n = 5:

(27, 84, 110, 133, 144)

ELKIES (1998) For n = 4, rational points are dense.

Euler's conjecture (1769)

$$\underbrace{x_1^n + x_2^n + \dots + x_{n-1}^n = x_n^n}_{\text{Calabi-Yau}}, \qquad n \ge 4,$$

has no nontrivial solutions in \mathbb{Q} .

Counterexample n = 5:

(27, 84, 110, 133, 144)

ELKIES (1998) For n = 4, rational points are dense. The smallest solution is (95800, 217519, 414560, 422481).

$$\underbrace{x^3 + y^3 + z^3 = c}_{\text{log-K3 surface}}$$

No solutions in \mathbb{Z} , if $c = \pm 4 \pmod{9}$.

$$\underbrace{x^3 + y^3 + z^3 = c}_{\text{log-K3 surface}}$$

No solutions in \mathbb{Z} , if $c = \pm 4 \pmod{9}$. The only known solutions for c = 3 are

(1, 1, 1), (4, 4, -5), (4, -5, 4), (-5, 4, 4).

$$\underbrace{x^3 + y^3 + z^3 = c}_{\text{log-K3 surface}}$$

No solutions in \mathbb{Z} , if $c = \pm 4 \pmod{9}$. The only known solutions for c = 3 are

$$(1, 1, 1), (4, 4, -5), (4, -5, 4), (-5, 4, 4).$$

BOOKER (2019)

(8866128975287528, -8778405442862239, -2736111468807040)

is the smallest solution for c = 33.

$$\underbrace{x^3 + y^3 + z^3 = c}_{\text{log-K3 surface}}$$

No solutions in \mathbb{Z} , if $c = \pm 4 \pmod{9}$. The only known solutions for c = 3 are

$$(1, 1, 1), (4, 4, -5), (4, -5, 4), (-5, 4, 4).$$

BOOKER (2019)

(8866128975287528, -8778405442862239, -2736111468807040)

is the smallest solution for c = 33.

23 core-years. No solution is known for c = 42.

Close connections to complexity theory and computer science:

• A solution is easy to verify but hard to find

Close connections to complexity theory and computer science:

- A solution is easy to verify but hard to find
- Hidden structures (group law on elliptic curves)

Close connections to complexity theory and computer science:

- A solution is easy to verify but hard to find
- Hidden structures (group law on elliptic curves)
- Lattices interacting with geometry

RATIONAL POINTS ON CUBIC SURFACES

RATIONAL POINTS ON CUBIC SURFACES

RATIONAL POINTS ON CUBIC SURFACES

There is an abundance of concrete, computational results concerning specific equations.

We need an organizing principle: geometry.

RATIONAL CURVES

$$\mathbb{P}^1 = (x:y)$$

RATIONAL CURVES

$$\mathbb{P}^1 = (x:y)$$

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$\{x^2 + y^2 = z^2\}$$

$$x(t) := t^2 - 1, \quad y(t) = 2t, \quad z(t) = t^2 + 1$$

$$xyz = w^3$$

can be parametrized by two independent variables

$$x = s$$
, $y = t$, $z = s^2 t^2$, $w = st$

contains lines, e.g., x = w = 0.

$X \subset \mathbb{P}^n$

algebraic variety = system of homogeneous polynomial equations in n + 1 variables, with coefficients in a field k, e.g.,

$$X := \left\{ \sum_{i=0}^{n} c_j x_i^d = 0, \quad c_i \in k \right\}, \qquad d = 2, 3, 4, \dots$$

$X \subset \mathbb{P}^n$

algebraic variety = system of homogeneous polynomial equations in n + 1 variables, with coefficients in a field k, e.g.,

$$X := \left\{ \sum_{i=0}^{n} c_j x_i^d = 0, \quad c_i \in k \right\}, \qquad d = 2, 3, 4, \dots$$

Geometry concerns properties over algebraically closed fields, e.g., $k = \mathbb{C}$.

Main questions:

- Invariants (dimension, degree)
- Classification
 - Fano, Calabi-Yau, general type
 - rational, stably rational, unirational, rationally connected
 - homogeneous, ...
- Singularities
- Fibrations, families of subvarieties, e.g., lines

Surfaces of degree 2, 3, and 4

Geometry

Study of

X(k),

the set of k-rational points of X, i.e., nontrivial solutions of the system of defining equations, when k is not algebraically closed:

$$k = \mathbb{F}_p, \quad \mathbb{Q}, \quad \mathbb{F}_p(t), \quad \mathbb{C}(t), \dots$$

Study of

X(k),

the set of k-rational points of X, i.e., nontrivial solutions of the system of defining equations, when k is not algebraically closed:

$$k = \mathbb{F}_p, \quad \mathbb{Q}, \quad \mathbb{F}_p(t), \quad \mathbb{C}(t), \dots$$

Main questions:

- Existence of points
- Density in various topologies

$\{Arithmetic\} \Leftrightarrow \{Geometry\}$

$\{Arithmetic\} \quad \Leftrightarrow \quad \{Geometry\}$

• Existence of rational and elliptic curves on $X(\mathbb{C})$

$\{Arithmetic\} \Leftrightarrow \{Geometry\}$

- Existence of rational and elliptic curves on $X(\mathbb{C})$
- Geometric properties of families parametrizing such curves

${Arithmetic} \Leftrightarrow {Geometry}$

- Existence of rational and elliptic curves on $X(\mathbb{C})$
- Geometric properties of families parametrizing such curves

Goal today: Discuss examples, at the interface of these fields.

- O low degree: del Pezzo surfaces, Fano threefolds, \ldots
- ligh degree: general type
- intermediate type

- low degree: del Pezzo surfaces, Fano threefolds, ...
- In high degree: general type
- intermediate type

Basic examples:

- $X_d \subset \mathbb{P}^n$, with $d \leq n$: quadrics, cubic surfaces
- $argup{X_d}$ with $d \ge n+2$
- X_d with d = n + 1: K3 surfaces and their higher dimensional analogs, Calabi-Yau varieties

BIRATIONAL CLASSIFICATION

How close is X to \mathbb{P}^n ?
How close is X to \mathbb{P}^n ?

(R) rational = birational to \mathbb{P}^n

How close is X to \mathbb{P}^n ?

(R) rational = birational to \mathbb{P}^n

(S) stably rational = $X \times \mathbb{P}^n$ is rational, for some n

How close is X to \mathbb{P}^n ?

(R) rational = birational to \mathbb{P}^n

(S) stably rational = $X \times \mathbb{P}^n$ is rational, for some n

(U) unitational = dominated by \mathbb{P}^n

How close is X to \mathbb{P}^n ?

(R) rational = birational to \mathbb{P}^n

(S) stably rational = $X \times \mathbb{P}^n$ is rational, for some n

(U) unirational = dominated by \mathbb{P}^n

(RC) rational connectedness = for all $x_1, x_2 \in X(k)$ there is a rational curve C/k such that $x_1, x_2 \in C(k)$

 $(R) \Rightarrow (S) \Rightarrow (U) \Rightarrow (RC)$

How close is X to \mathbb{P}^n ?

(R) rational = birational to \mathbb{P}^n

(S) stably rational = $X \times \mathbb{P}^n$ is rational, for some n

(U) unirational = dominated by \mathbb{P}^n

(RC) rational connectedness = for all $x_1, x_2 \in X(k)$ there is a rational curve C/k such that $x_1, x_2 \in C(k)$

$$(\mathrm{R}) \Rightarrow (\mathrm{S}) \Rightarrow (\mathrm{U}) \Rightarrow (\mathrm{RC})$$

These properties depend on the ground field k

 $\underbrace{x^2 + y^2 + z^2 = 0}_{\text{not rational over } \mathbb{Q}, \ X(\mathbb{Q}) = \emptyset}$

$$\underbrace{x^2 + y^2 - z^2 = 0}_{\text{rational over } \mathbb{Q}}$$

• Over \mathbb{C} , in dimension ≤ 2 , the notions coincide.

- Over \mathbb{C} , in dimension ≤ 2 , the notions coincide.
- Over \mathbb{Q} , in dimension ≥ 2 , and over \mathbb{C} , in dimension ≥ 3 ,

 $(R) \neq (S) \neq (U) \stackrel{?}{=} (RC)$

There exist intersections of two quadrics Q₁ ∩ Q₂ ⊂ P⁴, over Q, which are stably rational but not rational.

- There exist intersections of two quadrics Q₁ ∩ Q₂ ⊂ P⁴, over Q, which are stably rational but not rational.
- Cubic surfaces with a point over k are unirational, but not always stably rational or rational.

- There exist intersections of two quadrics Q₁ ∩ Q₂ ⊂ P⁴, over Q, which are stably rational but not rational.
- Cubic surfaces with a point over k are unirational, but not always stably rational or rational.

Yang-T. (2018)

A minimal nonrational cubic surface is not stably rational.

- There exist intersections of two quadrics Q₁ ∩ Q₂ ⊂ P⁴, over Q, which are stably rational but not rational.
- Cubic surfaces with a point over k are unirational, but not always stably rational or rational.

Yang-T. (2018)

A minimal nonrational cubic surface is not stably rational.

• There are effective procedures to determine rationality of a cubic surface over Q.

- There exist intersections of two quadrics Q₁ ∩ Q₂ ⊂ P⁴, over Q, which are stably rational but not rational.
- Cubic surfaces with a point over k are unirational, but not always stably rational or rational.

Yang-T. (2018)

A minimal nonrational cubic surface is not stably rational.

- There are effective procedures to determine rationality of a cubic surface over Q.
- There is no effective procedure to determine whether a cubic surface over Q has a Q-rational point, at present.

Unitationality over k implies Zariski density of X(k).

Smooth quartic threefolds $X_4 \subset \mathbb{P}^4$ are not rational, some are known to be unirational.

Unitationality over k implies Zariski density of X(k).

Smooth quartic threefolds $X_4 \subset \mathbb{P}^4$ are not rational, some are known to be unirational.

HARRIS-T. (1998)

Rational points on X_4 over number fields k are potentially dense, i.e., Zariski dense after a finite extension of k.

$$X = Q_1 \cap Q_2 \subset \mathbb{P}^5$$

be a smooth intersection of two quadrics over a field k.

• X is rational over $k = \mathbb{C}$.

$$X = Q_1 \cap Q_2 \subset \mathbb{P}^5$$

be a smooth intersection of two quadrics over a field k.

- X is rational over $k = \mathbb{C}$.
- Assume that $X(k) \neq \emptyset$. Then X is unirational.

$$X = Q_1 \cap Q_2 \subset \mathbb{P}^5$$

be a smooth intersection of two quadrics over a field k.

- X is rational over $k = \mathbb{C}$.
- Assume that $X(k) \neq \emptyset$. Then X is unirational.

HASSETT-T. (2019)

X is rational over k if and only if X contains a line over k.

$$X = Q_1 \cap Q_2 \subset \mathbb{P}^5$$

be a smooth intersection of two quadrics over a field k.

- X is rational over $k = \mathbb{C}$.
- Assume that $X(k) \neq \emptyset$. Then X is unirational.

HASSETT-T. (2019)

X is rational over k if and only if X contains a line over k.

A very general X is not stably rational over $k = \mathbb{C}(t)$.

RATIONAL POINTS ON K3 SURFACES

K3 surfaces are not rational.

K3 surfaces are not rational.

The only known nontrivial $\mathbb Q\text{-}\mathrm{rational}$ point on

$$x^4 + 2y^4 = z^4 + 4w^4$$

is (up to signs):

 $(1\,484\,801, 1\,203\,120, 1\,169\,407, 1\,157\,520).$

K3 surfaces are not rational.

The only known nontrivial Q-rational point on

$$x^4 + 2y^4 = z^4 + 4w^4$$

is (up to signs):

```
(1\,484\,801, 1\,203\,120, 1\,169\,407, 1\,157\,520).
```

This surface contains 48 lines, over $\overline{\mathbb{Q}}$.

Let N(d) be the number of rational *d*-nodal curves on a K3 surface.

YAU-ZASLOW FORMULA (1996) $\sum_{d\geq 0} N(d)t^d = \prod_{d\geq 1} \left(\frac{1}{1-t^d}\right)^{24}.$

BOGOMOLOV-T. (2000)

Let $X\to \mathbb{P}^1$ be an elliptic K3 surface over a field k of characteristic zero. Then

• X contains infinitely many rational curves over \bar{k}

BOGOMOLOV-T. (2000)

Let $X \to \mathbb{P}^1$ be an elliptic K3 surface over a field k of characteristic zero. Then

- X contains infinitely many rational curves over \bar{k} ,
- rational points on X are potentially dense.

BOGOMOLOV-T. (2000)

Let $X \to \mathbb{P}^1$ be an elliptic K3 surface over a field k of characteristic zero. Then

- X contains infinitely many rational curves over \bar{k} ,
- rational points on X are potentially dense.

Technique: deformation and specialization

Let X be a K3 surface over an algebraically closed field k of characteristic zero. Then X contains infinitely many rational curves.

• Bogomolov-Hassett-T. (2010): $\deg(X) = 2$, i.e.,

$$w^2 = f_6(x, y, z),$$

- Li-Liedtke (2011): $\operatorname{Pic}(X) \simeq \mathbb{Z}$
- Chen-Gounelas-Liedtke (2019): general case

Let X be a K3 surface over an algebraically closed field k of characteristic zero. Then X contains infinitely many rational curves.

• Bogomolov-Hassett-T. (2010): $\deg(X) = 2$, i.e.,

$$w^2 = f_6(x, y, z),$$

- Li-Liedtke (2011): $\operatorname{Pic}(X) \simeq \mathbb{Z}$
- Chen-Gounelas-Liedtke (2019): general case

Technique: Reduction modulo p, deformation and specialization

KAMENOVA-VAFA (2019)

Let X be a Calabi-Yau variety over \mathbb{C} of dimension ≥ 3 (whose mirror-dual exists and is not Hodge-degenerate). Then X contains rational or elliptic curves.

Yau-Zaslow exhibited an abelian fibration

 $X^{[n]} \to \mathbb{P}^n,$

n-th punctual Hilbert scheme (n-th symmetric power) of the K3 surface X, a holomorphic symplectic variety.

Yau-Zaslow exhibited an abelian fibration

 $X^{[n]} \to \mathbb{P}^n,$

n-th punctual Hilbert scheme (*n*-th symmetric power) of the K3 surface X, a holomorphic symplectic variety.

HASSETT-T. (2000) Let X be a K3 surface over a field. Then there exists an n such that rational points on $X^{[n]}$ are potentially dense.

- Conjectural description of ample and effective divisors and of birational fibration structures (Hassett-T. 1999)
- Examples with Aut(X) trivial but Bir(X) infinite (Hassett-T. 2009)
- Proof of conjectures by Bayer–Macri (2013), Bayer–Hassett–T. (2015)

- Examples of general K3 surfaces X with X(k) dense
- Examples of Calabi-Yau: hypersurfaces of degree n + 1 in \mathbb{P}^n , with $n \ge 4$
- Integral points on log-Fano varieties
- Integral points on log-K3 surfaces over number fields are also potentially dense

TECHNIQUE: BROKEN TEETH

Managing rational curves:

- comb constructions
- deformation theory
- degenerations (bend and break)
- producing rational curves in prescribed homology classes

In higher dimensions, it is difficult to produce a rational parametrization or to show that no such parametrizations exists. In higher dimensions, it is difficult to produce a rational parametrization or to show that no such parametrizations exists.

How to parametrize $x^3 + y^3 + z^3 + w^3 = 0$?
In higher dimensions, it is difficult to produce a rational parametrization or to show that no such parametrizations exists.

How to parametrize $x^3 + y^3 + z^3 + w^3 = 0$? Elkies:

$$\begin{aligned} x &= -(s+r)t^2 + (s^2+2r^2)t - s^3 + rs^2 - 2r^2s - r^3 \\ y &= t^3 - (s+r)t^2 + (s^2+2r^2)t + rs^2 - 2r^2s + r^3 \\ z &= -t^3 + (s+r)t^2 - (s^2+2r^2)t + 2rs^2 - r^2s + 2r^3 \\ w &= (s-2r)t^2 + (r^2-s^2)t + s^3 - rs^2 + 2r^2s - 2r^3 \end{aligned}$$

In higher dimensions, it is difficult to produce a rational parametrization or to show that no such parametrizations exists.

How to parametrize $x^3 + y^3 + z^3 + w^3 = 0$? Elkies:

$$\begin{aligned} x &= -(s+r)t^2 + (s^2+2r^2)t - s^3 + rs^2 - 2r^2s - r^3 \\ y &= t^3 - (s+r)t^2 + (s^2+2r^2)t + rs^2 - 2r^2s + r^3 \\ z &= -t^3 + (s+r)t^2 - (s^2+2r^2)t + 2rs^2 - r^2s + 2r^3 \\ w &= (s-2r)t^2 + (r^2-s^2)t + s^3 - rs^2 + 2r^2s - 2r^3 \end{aligned}$$

What about $x^3 + y^3 + z^3 + 2w^3 = 0$?

(STABLE) RATIONALITY VIA SPECIALIZATION

- Larsen–Lunts (2003): $K_0(Var_k)/\mathbb{L}$ = free abelian group spanned by classes of algebraic varieties over k, modulo stable rationality.
- Nicaise–Shinder (2017): motivic reduction formula for the homomorphism

 $\mathrm{K}_0(Var_K)/\mathbb{L} \to \mathrm{K}_0(Var_k)/\mathbb{L}, \quad K = k((t)),$

in motivic integration, as in Kontsevich, Denef–Loeser, ...
Kontsevich–T. (2017): Same formula for

 $\operatorname{Burn}(K) \to \operatorname{Burn}(k),$

the free abelian group spanned by classes of varieties over the corresponding field, modulo rationality.

Specialization (Kontsevich-T. 2017)

- Let $\mathfrak{o} \simeq k[[t]], K \simeq k((t)), \operatorname{char}(k) = 0.$
- Let X/K be a smooth proper (or projective) variety of dimension n, with function field L = K(X).
- Choose a regular model

$$\pi: \mathcal{X} \to \operatorname{Spec}(\mathfrak{o}),$$

such that π is proper and the special fiber \mathcal{X}_0 over $\operatorname{Spec}(k)$ is a simple normal crossings (snc) divisor:

$$\mathcal{X}_0 = \bigcup_{\alpha \in \mathcal{A}} d_\alpha D_\alpha, \quad d_\alpha \in \mathbb{Z}_{\geq 1}.$$

• Put

$$\rho_n([L/K]) := \sum_{\emptyset \neq A \subseteq \mathcal{A}} (-1)^{\#A-1} [D_A \times \mathbb{A}^{\#A-1}/k],$$

Exhibit a family

 $\mathcal{X} \to B$

such that some, mildly singular, special fibers admit (cohomological) obstructions to (stable) rationality.

Then a very general member of this family will also fail (stable) rationality.

Smooth cubic threefolds X/\mathbb{C} are not rational.

Via analysis of the geometry of the corresponding intermediate Jacobian IJ(X), Clemens-Griffiths (1972).

Smooth cubic threefolds X/\mathbb{C} are not rational.

Via analysis of the geometry of the corresponding intermediate Jacobian IJ(X), Clemens-Griffiths (1972).

Nonrationality of the smooth Klein cubic threefold $X \subset \mathbb{P}^4$

$$x_0^2 x_1 + x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_4 + x_4^2 x_0 = 0,$$

is easier to prove: $PSL_2(\mathbb{F}_{11})$ acts on X and on IJ(X); this action is not compatible with a decomposition of IJ(X) into a product of Jacobians of curves.

Smooth cubic threefolds X/\mathbb{C} are not rational.

Via analysis of the geometry of the corresponding intermediate Jacobian IJ(X), Clemens-Griffiths (1972).

Nonrationality of the smooth Klein cubic threefold $X \subset \mathbb{P}^4$

$$x_0^2 x_1 + x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_4 + x_4^2 x_0 = 0,$$

is easier to prove: $PSL_2(\mathbb{F}_{11})$ acts on X and on IJ(X); this action is not compatible with a decomposition of IJ(X) into a product of Jacobians of curves.

Specialization of rationality implies that a very general smooth cubic threefold is also not rational.

Applications of specialization, over ${\mathbb C}$

HASSETT-KRESCH-T. (2015)

Very general conic bundles $\pi: X \to S$ over rational surfaces with discriminant of sufficiently large degree are not stably rational. HASSETT-KRESCH-T. (2015)

Very general conic bundles $\pi : X \to S$ over rational surfaces with discriminant of sufficiently large degree are not stably rational.

HASSETT-T. (2016) / Krylov-Okada (2017)

A very general nonrational Del Pezzo fibration $\pi : \mathcal{X} \to \mathbb{P}^1$, which is not birational to a cubic threefold, is not stably rational. HASSETT-KRESCH-T. (2015)

Very general conic bundles $\pi : X \to S$ over rational surfaces with discriminant of sufficiently large degree are not stably rational.

HASSETT-T. (2016) / KRYLOV-OKADA (2017)

A very general nonrational Del Pezzo fibration $\pi : \mathcal{X} \to \mathbb{P}^1$, which is not birational to a cubic threefold, is not stably rational.

HASSETT-T. (2016)

A very general nonrational Fano threefold X which is not birational to a cubic threefold is not stably rational. The stable rationality problem in dimension 3, over \mathbb{C} , is essentially settled, with the exception of cubic threefolds.

Now the focus is on (stable) rationality over nonclosed fields.

Let X and Y be birational varieties with (birational) actions of a (finite) group G. Is there a G-equivariant birational isomorphism between X and Y?

Let X and Y be birational varieties with (birational) actions of a (finite) group G. Is there a G-equivariant birational isomorphism between X and Y?

Extensive literature on classification of (conjugacy classes of) finite subgroups of the Cremona group.

Main tool: explicit analysis of birational transformations.

• G - finite abelian group, $A = G^{\vee} = \operatorname{Hom}(G, \mathbb{C})$ • X - smooth projective variety, with G-action • $\beta: X \mapsto \sum [F_{\alpha}, [\ldots]], \quad X^{G} = \sqcup F_{\alpha}.$

$$\alpha$$

G - finite abelian group, A = G[∨] = Hom(G, C)
X - smooth projective variety, with G-action
β: X ↦ ∑_α[F_α, [...]], X^G = ⊔F_α.

Let $\tilde{X} \to X$ be a *G*-equivariant blowup. Consider relations

$$\beta(\tilde{X}) - \beta(X) = 0.$$

BIRATIONAL TYPES

Fix an integer $n \geq 2$ (dimension of X). Consider the Z-module $\mathcal{B}_n(G)$ generated by $[a_1,\ldots,a_n], a_i \in A,$ such that $\sum_i \mathbb{Z}a_i = A$, and (S) for all $\sigma \in \mathfrak{S}_n, a_1, \ldots, a_n \in A$ we have $[a_{\sigma(1)},\ldots,a_{\sigma(n)}]=[a_1,\ldots,a_n],$ (B) for all $2 \le k \le n$, all $a_1, \ldots, a_k \in A, b_1, \ldots, b_{n-k} \in A$ with $\sum_{i} \mathbb{Z}a_i + \sum_{j} \mathbb{Z}b_j = A$

we have

$$[a_1,\ldots,a_k,b_1,\ldots,b_{n-k}] =$$

$$= \sum_{1 \le i \le k, \ a_i \ne a_{i'}, \forall i' < i} [a_1 - a_i, \dots, a_i, \dots, a_k - a_i, b_1, \dots, b_{n-k}]$$

Kontsevich-T. 2019

The class

$$\beta(X) \in \mathcal{B}_n(G)$$

is a well-defined G-equivariant birational invariant.

Assume that

$$G = \mathbb{Z}/p\mathbb{Z} \simeq A.$$

Then $\mathcal{B}_2(G)$ is generated by symbols $[a_1, a_2]$ such that

$$a_1, a_2 \in \mathbb{Z}/p\mathbb{Z}, \quad \gcd(a_1, a_2, p) = 1,$$

and

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_2(G)) = \frac{p^2 + 23}{24}$$

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_2(G)) = \frac{p^2 + 23}{24}$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_2(G)) = \frac{p^2 + 23}{24}$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{3}(G)) \stackrel{?}{=} \frac{(p-5)(p-7)}{24}$$

٠

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_2(G)) = \frac{p^2 + 23}{24}$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{3}(G)) \stackrel{?}{=} \frac{(p-5)(p-7)}{24}$$

٠

Jumps at

$$p = 43, 59, 67, 83, \dots$$

Consider the \mathbb{Z} -module

 $\mathcal{M}_n(G) \quad \text{generated by} \quad \langle a_1, \dots, a_n \rangle, \quad a_i \in A,$ such that $\sum_i \mathbb{Z}a_i = A$, and (S) for all $\sigma \in \mathfrak{S}_n, a_1, \dots, a_n \in A$ we have $\langle a_{\sigma(1)}, \dots, a_{\sigma(n)} \rangle = \langle a_1, \dots, a_n \rangle,$ (M) $\langle a_1, a_2, a_3, \dots, a_n \rangle =$ $\langle a_1, a_2 - a_1, a_3, \dots, a_n \rangle + \langle a_1 - a_2, a_2, a_3, \dots, a_n \rangle$

BIRATIONAL TYPES

The natural homomorphism

```
\mathcal{B}_n(G) \to \mathcal{M}_n(G)
```

is a surjection (modulo 2-torsion), and conjecturally an isomorphism, modulo torsion.

BIRATIONAL TYPES

The natural homomorphism

$$\mathcal{B}_n(G) \to \mathcal{M}_n(G)$$

is a surjection (modulo 2-torsion), and conjecturally an isomorphism, modulo torsion.

Imposing an additional relation on symbols

$$\langle -a_1, a_2, \dots, a_n \rangle = -\langle a_1, a_2, \dots, a_n \rangle$$

we obtain a surjection

$$\mathcal{M}_n(G) \to \mathcal{M}_n^-(G).$$

The modular groups carry (commuting) Hecke operators: $T_{\ell,r}: \mathcal{M}_n(G) \to \mathcal{M}_n(G) \quad 1 \le r \le n-1$ The modular groups carry (commuting) Hecke operators:

$$T_{\ell,r}: \mathcal{M}_n(G) \to \mathcal{M}_n(G) \quad 1 \le r \le n-1$$

Example:

$$T_2(\langle a_1, a_2 \rangle) = \langle 2a_2, a_2 \rangle + (\langle a_1 - a_2, 2a_2 \rangle + \langle 2a_1, a_2 - a_1 \rangle) + \langle a_1, 2a_2 \rangle.$$

EIGENVALUES OF T_2 ON $\mathcal{M}_2(\mathbb{Z}/59\mathbb{Z})$

Computations of \mathbb{Q} -ranks of $\mathcal{B}_n(\mathbb{Z}/N\mathbb{Z})$

	(2, 2)	(3, 2)	(3, 3)	(4, 2)	(4, 3)	(4, 4)	(5, 2)
2	0	0	1	0	0	0	0
3	1	0	2	0	0	3	0
4	1	0	2	0	0	2	0
5	2	0	4	0	0	6	0
6	3	0	7	0	0	14	0
7	3	0	6	0	0	9	0
8	4	0	14	0	0	17	0
9	6	1	13	0	0	45	0
10	6	0	18	0	0	17	0
11	6	1	12	0	0	17	0
12	11	2	44	0	1	117	0
13	8	2	15	0	0	20	0
14	10	1	28	0	0	28	0
15	16	5	40	0	1	141	0
16	14	3	81	0	1	121	0
17	13	5	22	0	0	29	0
18	20	6	68	0	2	313	0
19	16	7	27	0	0	35	0
20	24	7	138	0	3	228	0
21	27	11	70	0	0	313	0
22	22	8	70	0	1	68	0
23	23	12	35	0	0	45	0
24	37	15	256	0	19	904	0
25	32	16	66	0	2	116	0
26	30	14	100	0	2	84	0
27	40	22	100	1	5	665	0
28	42	18	268	0	7	519	0
29	36	22	56	0	0	64	0
30	55	27	253	0	15	1243	0
31	41	26	58	0	0	71	0
32	51	27	419	0	26	877	0
33	58	35	153	2	7	980	0
34	50	31	166	0	5	142	0
35	66	37	161	0	3	346	0
36	76	46	573	3	66	2931	0
37	58	40	81	0	0	94	0
38	62	42	210	0	7	188	0
39	78	53	208	4	14	1508	0
40	88	51	769	0	64	1914	0
41	71	51	94	0	0	111	0
42	97	63	475	2	36	3040	0
43	78	58	119	1	1	130	0
44	94	63	694	2	41	1709	0

Consider exact sequences of finite abelian groups

$$0 \to G' \to G \to G'' \to 0.$$

Consider exact sequences of finite abelian groups

$$0 \to G' \to G \to G'' \to 0.$$

We have operations

$$\nabla: \mathcal{M}_{n'}(G') \otimes \mathcal{M}_{n''}(G'') \to \mathcal{M}_{n'+n''}(G)$$
$$\Delta: \mathcal{M}_{n'+n''}(G) \to \mathcal{M}_{n'}(G') \otimes \mathcal{M}_{n''}^{-}(G'')$$

Structure

The resulting homomorphism

$$\mathcal{M}_2(\mathbb{Z}/p\mathbb{Z}) \to \mathcal{M}_2^-(\mathbb{Z}/p\mathbb{Z}) \oplus \mathcal{M}_1^-(\mathbb{Z}/p\mathbb{Z})$$

is an isomorphism, up to torsion.

Structure

The resulting homomorphism

$$\mathcal{M}_2(\mathbb{Z}/p\mathbb{Z}) \to \mathcal{M}_2^-(\mathbb{Z}/p\mathbb{Z}) \oplus \mathcal{M}_1^-(\mathbb{Z}/p\mathbb{Z})$$

is an isomorphism, up to torsion.

We have

$$\dim(\mathcal{M}_2^-(\mathbb{Z}/p\mathbb{Z})\otimes\mathbb{Q})=\mathsf{g}(X_1(p)),$$

where

$$X_1(p) = \Gamma_1(p) \backslash \mathcal{H}$$

is the modular curve for the congruence subgroup $\Gamma_1(p)$.

This is the tip of the iceberg – there is an unexpected connection between birational geometry and cohomology of arithmetic groups.

Arithmetic geometry today:

• extensive numerical experiments
Arithmetic geometry today:

- extensive numerical experiments
- assimilation of ideas and techniques from other branches of mathematics and mathematical physics

Arithmetic geometry today:

- extensive numerical experiments
- assimilation of ideas and techniques from other branches of mathematics and mathematical physics
- source of intuition and new approaches to classical problems in complex geometry