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Rational and integral points

We study solutions of diophantine equations:

rational points = (nontrivial) rational solutions of
equations, e.g.,

x3 + y3 + z3 = 0︸ ︷︷ ︸
elliptic curve

, x3 + y3 + z3 + t3 = 0︸ ︷︷ ︸
cubic surface

integral points = integral solutions of nonhomogeneous
equations, e.g.,

x2 + y2 + z2 = 3xyz︸ ︷︷ ︸
log-K3 surface

, x2 + y2 + z2 = c︸ ︷︷ ︸
log-Fano surface

, c ∈ N.
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Rational points

Balakrishnan, ... (2018)

The only rational points on the curve

y2 = −4x7 + 24x6 − 56x5 + 72x4 − 56x3 + 28x2 − 8x+ 1.

are
(0,−1), (0, 1), (1,−1), (1, 1).

Introduction



Rational points

Euler’s conjecture (1769)

xn1 + xn2 + · · ·+ xnn−1 = xnn︸ ︷︷ ︸
Calabi-Yau

, n ≥ 4,

has no nontrivial solutions in Q.

Counterexample n = 5 :

(27, 84, 110, 133, 144)

Elkies (1998)

For n = 4, rational points are dense. The smallest solution is

(95800, 217519, 414560, 422481).

Introduction
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Integral points

x3 + y3 + z3 = c︸ ︷︷ ︸
log-K3 surface

No solutions in Z, if c = ±4 (mod 9).

The only known solutions
for c = 3 are

(1, 1, 1), (4, 4,−5), (4,−5, 4), (−5, 4, 4).

Booker (2019)

(8866128975287528,−8778405442862239,−2736111468807040)

is the smallest solution for c = 33.

23 core-years. No solution is known for c = 42.
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Rational and integral points

Sporadic, appear out of nowhere.

Close connections to complexity theory and computer science:

A solution is easy to verify but hard to find

Hidden structures (group law on elliptic curves)

Lattices interacting with geometry
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Rational points on cubic surfaces
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How to navigate?

There is an abundance of concrete, computational results
concerning specific equations.

We need an organizing principle: geometry.

Introduction



Rational curves

P1 = (x : y)

P1 ↪→ P2

{x2 + y2 = z2}

x(t) := t2 − 1, y(t) = 2t, z(t) = t2 + 1

Introduction
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Rational surfaces

xyz = w3

can be parametrized by two independent variables

x = s, y = t, z = s2t2, w = st

contains lines, e.g., x = w = 0.

Introduction



Basic algebraic geometry

X ⊂ Pn

algebraic variety = system of homogeneous polynomial
equations in n+ 1 variables, with coefficients in a field k, e.g.,

X :=

{
n∑
i=0

cjx
d
i = 0, ci ∈ k

}
, d = 2, 3, 4, . . .

Geometry concerns properties over algebraically closed fields,
e.g., k = C.

Geometry
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Basic algebraic geometry

Main questions:

Invariants (dimension, degree)

Classification

Fano, Calabi-Yau, general type
rational, stably rational, unirational, rationally
connected
homogeneous, ...

Singularities

Fibrations, families of subvarieties, e.g., lines

Geometry



Surfaces of degree 2, 3, and 4

Geometry



Basic arithmetic geometry

Study of
X(k),

the set of k-rational points of X, i.e., nontrivial solutions of the
system of defining equations, when k is not algebraically closed:

k = Fp, Q, Fp(t), C(t), ...

Main questions:

Existence of points

Density in various topologies

Geometry
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Study of
X(k),

the set of k-rational points of X, i.e., nontrivial solutions of the
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Lang’s philosophy:

{Arithmetic} ⇔ {Geometry}

Existence of rational and elliptic curves on X(C)

Geometric properties of families parametrizing such curves

Goal today: Discuss examples, at the interface of these fields.

Geometry
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Classification via degree

1 low degree: del Pezzo surfaces, Fano threefolds, . . .

2 high degree: general type

3 intermediate type

Basic examples:

1 Xd ⊂ Pn, with d ≤ n: quadrics, cubic surfaces

2 Xd with d ≥ n+ 2

3 Xd with d = n+ 1: K3 surfaces and their higher
dimensional analogs, Calabi-Yau varieties

Classification schemes
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Birational classification

How close is X to Pn?

(R) rational = birational to Pn

(S) stably rational = X × Pn is rational, for some n

(U) unirational = dominated by Pn

(RC) rational connectedness = for all x1, x2 ∈ X(k) there is a
rational curve C/k such that x1, x2 ∈ C(k)

(R)⇒ (S)⇒ (U)⇒ (RC)

These properties depend on the ground field k

x2 + y2 + z2 = 0︸ ︷︷ ︸
not rational over Q, X(Q) = ∅

x2 + y2 − z2 = 0︸ ︷︷ ︸
rational over Q

Classification schemes
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Birational classification

Over C, in dimension ≤ 2, the notions coincide.

Over Q, in dimension ≥ 2, and over C, in dimension ≥ 3,

(R) 6= (S) 6= (U)
?
= (RC)

Classification schemes
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Rationality of surfaces

There exist intersections of two quadrics Q1 ∩Q2 ⊂ P4,
over Q, which are stably rational but not rational.

Cubic surfaces with a point over k are unirational, but not
always stably rational or rational.

Yang–T. (2018)

A minimal nonrational cubic surface is not stably rational.

There are effective procedures to determine rationality of a
cubic surface over Q.

There is no effective procedure to determine whether a
cubic surface over Q has a Q-rational point, at present.

Surfaces
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Fano threefolds: Quartics

Unirationality over k implies Zariski density of X(k).

Smooth quartic threefolds X4 ⊂ P4 are not rational, some are
known to be unirational.

Harris–T. (1998)

Rational points on X4 over number fields k are potentially
dense, i.e., Zariski dense after a finite extension of k.

Fano threefolds
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Intersections of two quadrics

Let
X = Q1 ∩Q2 ⊂ P5

be a smooth intersection of two quadrics over a field k.

X is rational over k = C.

Assume that X(k) 6= ∅. Then X is unirational.

Hassett–T. (2019)

X is rational over k if and only if X contains a line over k.

A very general X is not stably rational over k = C(t).

Fano threefolds
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Rational points on K3 surfaces

K3 surfaces are not rational.

The only known nontrivial Q-rational point on

x4 + 2y4 = z4 + 4w4

is (up to signs):

(1 484 801, 1 203 120, 1 169 407, 1 157 520).

This surface contains 48 lines, over Q̄.

K3 surfaces
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Rational curves on K3 surfaces

Let N(d) be the number of rational d-nodal curves on a K3
surface.

Yau-Zaslow formula (1996)∑
d≥0

N(d)td =
∏
d≥1

(
1

1− td

)24

.

K3 surfaces



Rational points and curves on K3 surfaces

Bogomolov-T. (2000)

Let X → P1 be an elliptic K3 surface over a field k of
characteristic zero. Then

X contains infinitely many rational curves over k̄

,

rational points on X are potentially dense.

Technique: deformation and specialization

K3 surfaces
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Rational curves on K3 surfaces

Let X be a K3 surface over an algebraically closed field k of
characteristic zero. Then X contains infinitely many rational
curves.

Bogomolov-Hassett-T. (2010): deg(X) = 2, i.e.,

w2 = f6(x, y, z),

Li-Liedtke (2011): Pic(X) ' Z

Chen-Gounelas-Liedtke (2019): general case

Technique: Reduction modulo p, deformation and specialization

K3 surfaces
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Rational curves on Calabi-Yau varieties

Kamenova-Vafa (2019)

Let X be a Calabi-Yau variety over C of dimension ≥ 3 (whose
mirror-dual exists and is not Hodge-degenerate). Then X
contains rational or elliptic curves.

K3 surfaces



Zariski density of rational points

Yau-Zaslow exhibited an abelian fibration

X [n] → Pn,

n-th punctual Hilbert scheme (n-th symmetric power) of the K3
surface X, a holomorphic symplectic variety.

Hassett-T. (2000)

Let X be a K3 surface over a field. Then there exists an n such
that rational points on X [n] are potentially dense.

K3 surfaces
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Rational curves on K3[n]

Conjectural description of ample and effective divisors and
of birational fibration structures (Hassett-T. 1999)

Examples with Aut(X) trivial but Bir(X) infinite
(Hassett–T. 2009)

Proof of conjectures by Bayer–Macri (2013),
Bayer–Hassett–T. (2015)

K3 surfaces



Zariski density over k = C(B) / Hassett–T.

Examples of general K3 surfaces X with X(k) dense

Examples of Calabi-Yau: hypersurfaces of degree n+ 1 in
Pn, with n ≥ 4

Integral points on log-Fano varieties

Integral points on log-K3 surfaces over number fields are
also potentially dense

Arithmetic over function fields



Technique: Broken teeth

Arithmetic over function fields



Techniques

Managing rational curves:

comb constructions

deformation theory

degenerations (bend and break)

producing rational curves in prescribed homology classes

Arithmetic over function fields



Rationality

In higher dimensions, it is difficult to produce a rational
parametrization or to show that no such parametrizations exists.

How to parametrize x3 + y3 + z3 + w3 = 0? Elkies:

x = −(s+ r)t2 + (s2 + 2r2)t− s3 + rs2 − 2r2s− r3

y = t3 − (s+ r)t2 + (s2 + 2r2)t+ rs2 − 2r2s+ r3

z = −t3 + (s+ r)t2 − (s2 + 2r2)t+ 2rs2 − r2s+ 2r3

w = (s− 2r)t2 + (r2 − s2)t+ s3 − rs2 + 2r2s− 2r3

What about x3 + y3 + z3 + 2w3 = 0?

Birational types
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parametrization or to show that no such parametrizations exists.

How to parametrize x3 + y3 + z3 + w3 = 0? Elkies:

x = −(s+ r)t2 + (s2 + 2r2)t− s3 + rs2 − 2r2s− r3

y = t3 − (s+ r)t2 + (s2 + 2r2)t+ rs2 − 2r2s+ r3

z = −t3 + (s+ r)t2 − (s2 + 2r2)t+ 2rs2 − r2s+ 2r3

w = (s− 2r)t2 + (r2 − s2)t+ s3 − rs2 + 2r2s− 2r3

What about x3 + y3 + z3 + 2w3 = 0?
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(Stable) rationality via specialization

Larsen–Lunts (2003): K0(V ark)/L = free abelian group
spanned by classes of algebraic varieties over k, modulo
stable rationality.

Nicaise–Shinder (2017): motivic reduction – formula for
the homomorphism

K0(V arK)/L→ K0(V ark)/L, K = k((t)),

in motivic integration, as in Kontsevich, Denef–Loeser, ...

Kontsevich–T. (2017): Same formula for

Burn(K)→ Burn(k),

the free abelian group spanned by classes of varieties over
the corresponding field, modulo rationality.
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Specialization (Kontsevich-T. 2017)

Let o ' k[[t]], K ' k((t)), char(k) = 0.

Let X/K be a smooth proper (or projective) variety of
dimension n, with function field L = K(X).

Choose a regular model

π : X → Spec(o),

such that π is proper and the special fiber X0 over Spec(k)
is a simple normal crossings (snc) divisor:

X0 = ∪α∈AdαDα, dα ∈ Z≥1.

Put

ρn([L/K]) :=
∑
∅6=A⊆A

(−1)#A−1[DA × A#A−1/k],

Birational types



How to apply?

Exhibit a family
X → B

such that some, mildly singular, special fibers admit
(cohomological) obstructions to (stable) rationality.

Then a very general member of this family will also fail (stable)
rationality.
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Sample application

Smooth cubic threefolds X/C are not rational.

Via analysis of the geometry of the corresponding intermediate
Jacobian IJ(X), Clemens-Griffiths (1972).

Nonrationality of the smooth Klein cubic threefold X ⊂ P4

x20x1 + x21x2 + x22x3 + x23x4 + x24x0 = 0,

is easier to prove: PSL2(F11) acts on X and on IJ(X); this
action is not compatible with a decomposition of IJ(X) into a
product of Jacobians of curves.

Specialization of rationality implies that a very general smooth
cubic threefold is also not rational.

Birational types



Sample application

Smooth cubic threefolds X/C are not rational.

Via analysis of the geometry of the corresponding intermediate
Jacobian IJ(X), Clemens-Griffiths (1972).

Nonrationality of the smooth Klein cubic threefold X ⊂ P4

x20x1 + x21x2 + x22x3 + x23x4 + x24x0 = 0,

is easier to prove: PSL2(F11) acts on X and on IJ(X); this
action is not compatible with a decomposition of IJ(X) into a
product of Jacobians of curves.

Specialization of rationality implies that a very general smooth
cubic threefold is also not rational.

Birational types



Sample application

Smooth cubic threefolds X/C are not rational.

Via analysis of the geometry of the corresponding intermediate
Jacobian IJ(X), Clemens-Griffiths (1972).

Nonrationality of the smooth Klein cubic threefold X ⊂ P4

x20x1 + x21x2 + x22x3 + x23x4 + x24x0 = 0,

is easier to prove: PSL2(F11) acts on X and on IJ(X); this
action is not compatible with a decomposition of IJ(X) into a
product of Jacobians of curves.

Specialization of rationality implies that a very general smooth
cubic threefold is also not rational.

Birational types



Applications of specialization, over C

Hassett–Kresch–T. (2015)

Very general conic bundles π : X → S over rational surfaces
with discriminant of sufficiently large degree are not stably
rational.

Hassett-T. (2016) / Krylov-Okada (2017)

A very general nonrational Del Pezzo fibration π : X → P1,
which is not birational to a cubic threefold, is not stably
rational.

Hassett-T. (2016)

A very general nonrational Fano threefold X which is not
birational to a cubic threefold is not stably rational.
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Rationality in dimension 3

The stable rationality problem in dimension 3, over C, is
essentially settled, with the exception of cubic threefolds.

Now the focus is on (stable) rationality over nonclosed fields.

Birational types



Equivariant birational geometry

Let X and Y be birational varieties with (birational) actions of
a (finite) group G. Is there a G-equivariant birational
isomorphism between X and Y ?

Extensive literature on classification of (conjugacy classes of)
finite subgroups of the Cremona group.

Main tool: explicit analysis of birational transformations.

Equivariant birational types / Kontsevich–Pestun–T. (2019)
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Equivariant birational types

G - finite abelian group, A = G∨ = Hom(G,C)

X - smooth projective variety, with G-action

β : X 7→
∑
α

[Fα, [. . .]], XG = tFα.

Let X̃ → X be a G-equivariant blowup. Consider relations

β(X̃)− β(X) = 0.
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Birational types

Fix an integer n ≥ 2 (dimension of X). Consider the Z-module

Bn(G) generated by [a1, . . . , an], ai ∈ A,

such that
∑

i Zai = A, and

(S) for all σ ∈ Sn, a1, . . . , an ∈ A we have

[aσ(1), . . . , aσ(n)] = [a1, . . . , an],

(B) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A, b1, . . . , bn−k ∈ A with∑
i

Zai +
∑
j

Zbj = A

we have
[a1, . . . , ak, b1, . . . bn−k] =

=
∑

1≤i≤k, ai 6=ai′ ,∀i′<i
[a1 − ai, . . . , ai, . . . , ak − ai, b1, . . . , bn−k]

Equivariant birational types / Kontsevich–Pestun–T. (2019)



Birational types

Kontsevich-T. 2019

The class
β(X) ∈ Bn(G)

is a well-defined G-equivariant birational invariant.

Equivariant birational types / Kontsevich–Pestun–T. (2019)



Birational types

Assume that
G = Z/pZ ' A.

Then B2(G) is generated by symbols [a1, a2] such that

a1, a2 ∈ Z/pZ, gcd(a1, a2, p) = 1,

and

[a1, a2] = [a2, a1],

[a1, a2] = [a1, a2 − a1] + [a1 − a2, a2], where a1 6= a2,

[a, a] = [a, 0], for all a ∈ Z/pZ, gcd(a, p) = 1.

Equivariant birational types / Kontsevich–Pestun–T. (2019)



Birational types

This gives
(
p
2

)
linear equations in the same number of variables.

rkQ(B2(G)) =
p2 + 23

24

For n ≥ 3 the systems of equations are highly overdetermined.

rkQ(B3(G))
?
=

(p− 5)(p− 7)

24
.

Jumps at
p = 43, 59, 67, 83, ...

Equivariant birational types / Kontsevich–Pestun–T. (2019)
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Birational types

Consider the Z-module

Mn(G) generated by 〈a1, . . . , an〉, ai ∈ A,

such that
∑

i Zai = A, and

(S) for all σ ∈ Sn, a1, . . . , an ∈ A we have

〈aσ(1), . . . , aσ(n)〉 = 〈a1, . . . , an〉,

(M)
〈a1, a2, a3, . . . , an〉 =

〈a1, a2 − a1, a3, . . . , an〉+ 〈a1 − a2, a2, a3, . . . , an〉

Equivariant birational types / Kontsevich–Pestun–T. (2019)



Birational types

The natural homomorphism

Bn(G)→Mn(G)

is a surjection (modulo 2-torsion), and conjecturally an
isomorphism, modulo torsion.

Imposing an additional relation on symbols

〈−a1, a2, . . . , an〉 = −〈a1, a2, . . . , an〉

we obtain a surjection

Mn(G)→M−n (G).
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Hecke operators on Mn(G)

The modular groups carry (commuting) Hecke operators:

T`,r :Mn(G)→Mn(G) 1 ≤ r ≤ n− 1

Example:

T2(〈a1, a2〉) = 〈2a2, a2〉+
(
〈a1−a2, 2a2〉+〈2a1, a2−a1〉

)
+〈a1, 2a2〉.
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Eigenvalues of T2 on M2(Z/59Z)

Equivariant birational types / Kontsevich–Pestun–T. (2019)



Computations of Q-ranks of Bn(Z/NZ)
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Operations

Consider exact sequences of finite abelian groups

0→ G′ → G→ G′′ → 0.

We have operations

∇ :Mn′(G′)⊗Mn′′(G′′)→Mn′+n′′(G)

∆ :Mn′+n′′(G)→Mn′(G′)⊗M−n′′(G
′′)
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Structure

The resulting homomorphism

M2(Z/pZ)→M−2 (Z/pZ)⊕M−1 (Z/pZ)

is an isomorphism, up to torsion.

We have
dim(M−2 (Z/pZ)⊗ Q) = g(X1(p)),

where
X1(p) = Γ1(p)\H

is the modular curve for the congruence subgroup Γ1(p).

This is the tip of the iceberg – there is an unexpected
connection between birational geometry and cohomology of
arithmetic groups.
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Arithmetic geometry today:

extensive numerical experiments

assimilation of ideas and techniques from other branches of
mathematics and mathematical physics

source of intuition and new approaches to classical
problems in complex geometry

Conclusion



Arithmetic geometry today:

extensive numerical experiments

assimilation of ideas and techniques from other branches of
mathematics and mathematical physics

source of intuition and new approaches to classical
problems in complex geometry

Conclusion



Arithmetic geometry today:

extensive numerical experiments

assimilation of ideas and techniques from other branches of
mathematics and mathematical physics

source of intuition and new approaches to classical
problems in complex geometry

Conclusion


	Introduction
	Geometry
	Classification schemes
	Surfaces
	Fano threefolds
	K3 surfaces
	Arithmetic over function fields
	Birational types
	Equivariant birational types / Kontsevich–Pestun–T. (2019)
	Conclusion

