HMS and Monodromy JOHN MORGAN SEPT. 8, 2019 Institute of the Math. Sciences of the Americas

Motivated by HMS Morrison formulated a anjecture about minodromy about max unipotent boundary points of moduli of compact CY manifolds

MAXIMAL UNIPOTENT Bory pts. GENERAL Picture: Y -> M Smooth, proper family of alg. mots of drin. n. Fiber Yn M'nie" impletion of M. PEM-m pt of maxdepth, int. of h"(Y)=k divisors. Vnbld of p, U=VNM p

TI(U) free abelian, gen. Y,..., Xk. Monochrony Vi motific Auto(H'(YjZ)) Commuting quasi unipotent transformations $N_i = \log T_i$ $N = \sum_i N_i$, $a_i > o \forall i$ N nilpotent no monodrony wit filtration Together w/ limiting Hodge filtration gives limiting MAS.

Morrison Cong. for Y Calabi-You n-fald. I pe M - M. (1) max unipotent (Nⁿ 70) (2) Timiting MHS is HODGE-Tate (2) I'miting MHS is HODGE-Tate (1) = h^{n-r},r (7)] (3) $\pi_1(U) \otimes W_{2n}/W_{2n-1} \xrightarrow{\mathcal{L}} \frac{\mathcal{L}}{\mathcal{L}_{2n-3}}$ Since MHS is HODGE-TATE W_{2n} has rkl and W_{2n-2} has rk = h^{-1} (Y) W_{2n-1} W_{2n-3}

HMS predicts déformations of cempler str. (B-side) are minin to (≅ to) déform. of symplectic structure (A-side) (B-side) 1) Gauss-Manin connection 2) Flat lattice H*(Y; Z) 3) non-deg flat pairing [P.D.] 4) Hadge filtration F* satisfying Griffiths transversality Q(FP) CFP-1 5] limiting MHS at bdry points

On $H^{2*}(X; \mathbb{C})$ there is formal Q. coh. $\langle a \circ b, c \rangle = \sum_{B} \langle a, b, c \rangle_{B} g^{B}$ Here $b_{i,...,b_r}$ basis for $H_2(X;Z)$ $g_i: H^2(X:C) \longrightarrow C \quad is < , b_i >$ for $\beta = \Sigma \beta^i b_i$ we set $g^{\beta} = \pi g_i^{\beta^i}$

 Σ_{X} X = Qpn Q.coh QH(X) = Q[x, g]/x=gProperties: (i) qob=boa, (ii) <aob, >= <a, boc> (iii) (Gob)oc = ao(boc) (IV) divisor $q_{g_{R}}$: $\langle q, p, b \rangle_{g} = \langle q, b \rangle_{g} p(g)$ $\forall p \in [H^2(X; \mathbb{Z}))$ ALB

FOR TEHIXIC) set (aozb, c)= Z(q,b,c), e^(T,p) Will converge on U where < T,B> <<0 YB effective $log(fi) = \tau_i$ DUBROVIN CONNECTION $\nabla(\tau) = d - \frac{1}{z} \frac{z}{i} \frac{dg_i}{g_i} \cdot p_{\tau}$ flat for any $z \in \mathbb{C}^*$.

Flat extension to. $H^{2*}(X; 0) \times H(X; 0) \times C^* = F$ $H^{2}(X; \mathbb{C}) \times \mathbb{C}^{*}$ There is a flat non-degenerate pairing on F. $\langle a, b \rangle$ $(\tau_{1}u) = \langle a(\tau, 2), b(\tau, -2) \rangle$ F $(\tau_{1}u) = \langle a(\tau, 2), b(\tau, -2) \rangle$

Flat LATTICE (IRITANI & Katzarkov-Kontsevich) $T(z) = \int_{-\infty}^{\infty} e^{-t} t^{z-1} dt$, $\Gamma(n) = (n-1)!$
$$\begin{split} \widehat{T}(V) &= \prod \left[\left(1 + \lambda_{i}(V) \right) \quad \lambda_{i} \text{ Chern nots} \\ K(X)' \longrightarrow H^{2*}(X_{j}C) \\ V \longmapsto (2\pi)^{n/2} \widehat{F}(TX) \cup (2\pi i)^{n/2} \operatorname{ch}(V) \end{split}$$

Embeds K(X)/for as a latter in H²(X; (I)

Any flat section of F is asymptotic to $e^{-T/2} \alpha$ for some $\alpha \in H^{2*}(X; \mathbb{C})$. Identifies flat sections w/ HXXC) 2 hence embeds K(X) for as a lattice of flat sections. "Nop [Initani). Under this embedding the pairing ON FLAT Sections pulls DACK TO P.D. on K(W)

At this point on the A-side we have a hol. V. B. over H(X; C) × C* a flat connection with non-deg. pairing and a flat luttice identified nith K(X) on which the pairing is non-degenerate. No Hodge structure. In some sense The extra factor of C* replaces the HS. as explained by both Initanic and Katzarkov-Konterch' - Panter.

Monodromy is an action of H(X;Z) The induced action on K(X) sends 36 H2(XIZ) to &LZ. Dividing out gives a had V. B. with flat connection flat lattice and Non-degenerate pairing over $(H^2(X; C)/_{2\pi i} H^2(X, I)) \times C^{*}$ Monodromy assoc. with 2 Tris is & Lz

MORRISON - TYPE Conjecture holds for A-SIDE & K-theory: The monodromy Censists of rkH²(X) connecting unipotent transformations. The associat filtration is: $W_{2k} \cap K(X) = \{ \alpha \in K(X) | ch_i(\alpha) = 0 \text{ for } i < n-k \}$ $W_{2n}/W_{2n-1}(K(X)) \xrightarrow{C_0} \mathbb{Z}$ $W_{2n-2}/W_{2n-3}(K(X)) \xrightarrow{C_1} > 2\pi i H^2(X; \mathbb{Z})$ and monodiumy 1S $H^2(X; \mathbb{Z}) \otimes \frac{W_{2n}}{W_{2n-3}} \rightarrow \frac{1}{W_{2n-3}}$ W21-2

HMS We have similar types of stracture on A-side 2 B-side. It is time to introduce the mirror isomorphism. In general, it is conjectural. There is one class of examples where there are theorems: Toric varieties assoc in them. This relies on Givental's work

Toric FANOS: N lattice; SCNOR reflex. poly X assoc. toric variety (automatically FANO) What is its mirror? Landau-Ginzburg model Example: \mathbb{R}^{h} ; $\Sigma = convel hull fe, ..., n, -c, --- e_{n}$; $\mathcal{W}_{g}: (\mathbb{C}^{\times})^{h} \longrightarrow \mathbb{C}$ $(T_{i_1},...,T_n) \longrightarrow J_{i_1+\cdots+T_n+\frac{g_i}{T_i}}$

 $f_{g,2} = Re(W_{g/2}); \Upsilon_g \longrightarrow \mathbb{R}$ $H_n(Y_q, f_{q,2} < x_0, \mathbb{Z}) - R_n(q, \mathbb{Z})$ vanishing cyclos, R_n(g, Z) dual lattice to R_ng, Z) Intersection pairing is R_n(g, Z) @ R_n(g, Z) ->Z

Thm(Iritani) Mirror 😤 between Flat Dubrovin connector for Xz and the flat N. bundle R_ OCYXC* on L-G minor. This isomorphism sends the lattice $K(X_{\Sigma})$ to $R_n = H(Y_{\sigma}, f_{\sigma}, K_{\sigma})$ Compatible with monochomy action, the lattices and the pairings.

(Y hypersurfaces: YCX_ anti-canonical hypersuitaco. W;Y=>Ethe L-G mirror. Mirror of Y is compactification Z of Z=Wg(1) C Yg, a compactification coming from dual polytope ZCMOR to Zin MOR.

We DEFINE (a) K_{amb} (Y) < K(Y) to be image under pullback by inclusion. K(X) -> K(Y) (b) $H_{res}^{n-1}(\check{Z}) \subset H^{n-1}(\check{Z};\mathbb{Z})$ is P.Dto the subgroup of Hn-1(Z; Z) generated by the V.C. for Z<Y=NOC*

Thm (Iritani) Let UCH²(X; C) be a domain neur 7-00 on which the Q product converges. Suppose 2": H²(X₅; Q) -> H²(Y; Q) is an = Then there is a mirror isomorphism from $U/2\pi i \hat{H}(Y;Z) \longrightarrow M_{poly}(Z)$. This mirror isomorphism sends the bundle $H^{2*}(Y; \mathcal{O}) \times \left(\frac{1}{2\pi i H^2(Y; Z)} \right) = \frac{1}{2\pi i H^2(Y; Z)}$

to the bundle of Of relative (n-i) coh. of the fibers of 3 -> M z sending the Debrown connection to the Gauss-Manin com. and the flat lattice Kamb(Y) to relative Hn-1 (Z) and preserves the pairings and monodimy

 $K(X_z) \longrightarrow K_{amb}(Y) \subset K(Y)$ $\int \underbrace{\operatorname{Mirror}}_{\mathbb{F}_{n}} \stackrel{\sim}{=} \int \underbrace{\operatorname{Hirror}}_{\mathbb{F}_{n}} \stackrel{\sim}{=} \int \operatorname{Hirror}_{\mathbb{F}_{n}} (\check{Y}) \subset \operatorname{Hirr}(\check{Y}) (\check{Y})$ $R_{n}(g_{1}Z) \longrightarrow \operatorname{Hirror}_{\mathbb{F}_{n}} (\check{Y}) \subset \operatorname{Hirr}(\check{Y})$ Isomorphisme preserving pairings, flat conn. 2 monodromy.

Under our assumption there are no non-polynomial deformations of Z $K_{amb}(Y) < K(Y) & H_{res}^{n-1}(Z) < H(Z)$ are of finite index (the same index) Cor: In this case the monodromy of HM-(Z;Z) about the limit bdry point corresponding to the large radia lemit of Y satisfies Q-version of MORRISON'S Conjecture.

Furthermore, under these hypotheses for CY 3-folds MORRISON'S Conj. over I holds (=> the isomorphism extends to K(Y) => HN-1/2; I)

Addendum: There is a Hodge filtration on $H^{2n}(Y)$ defined by $F^{P} = \bigoplus_{2 \le 2(n-1-p)} L^{2i}(Y; \mathbb{C})$ The monodromy wt filtration in $W_{2k} = \bigoplus_{2i \ge 2(n-1-k)}^{j} H^{2i}(Y;C)$ These filtrations agree with those of the limiting MHS for the family 3 at the corresponding bodry pt.