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First Part: Self-Organized Criticality

LCeci nest nas une fufie.

Figure: La trahison des images, 1928, René Magritte



The naturals under addition
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Figure: Ce n'est pas des mathématiques. A super-computer
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CV by Leonardo (30 years old)
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Los cuadernos de Leonardo

Figure: “all branches of the tree, in each of their developments, together
equal the thickness of the tree”
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Las citas de Leonardo
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Leonardo’s Rule, Self-Similarity, and Wind-Induced Stresses in Trees

Christophe Eloy*
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Examining botanical trees, Leonanke da Vinci noted that the total cross section of branches is conserved
across branching nodes. In this Letter, it is proposed that this mle is o consequence of the tree skeleton
having a self-similar structure and the branch diameters being adjusted 10 resist wind-induced loads.

DO 10,1103 PhysRevLet, 107258101

Leonardo da Vinci observed in his notebooks that “all
the branches of a tree at every stage of its height when put
together are equal in thickness o the trunk™ [1], which
means that when a mother branch of diameter o splits into
N daughter branches of diameters d,, the following relation
holds on average

N
dh o= dp, (i

=1
where the Leonardo exponent is A = 2. Surprisingly, there
have been few assessments of this rule, but the av

PACS numbers: 87.10Pg, 89.75.Da, 8975 He

remains constant along the trunk length. The constant-
stress model has been shown to agree with observations
[13]), however, its implication on the whole branching
architecture has not yet been addressed (except in the
recent study of Lopez er al. [14]). The other imporant
int 1 constant stress might not be the best design
es that breakage s more likely to oceur i
trunk or in large branches where the presence of defects is
maore probable.

To address this problem, two equivalent analytical mod-
els are first considered: one discrete, the fractal model. and
one continuous. the beam model. inspired from McMahon

Figure: Physical Review Letters, 2011




Las citas de Leonardo

OPEN a ACCESS Freely available online

Tree Branching: Leonardo da Vinci’s Rule versus @
Biomechanical Models :

Ryoko Minamino®, Masaki Tateno
Kkl Botanical Garden, Graduate Schood of Scence, The University of Tokyo, Niko, Tochige, lapan

Abstract

This study examined Leonardo da Vincl's rube (Le., the sum of the cross-sectional area of all tree branches above a branching
Dﬁmitin)'leghtnequalluhmmmul’lh!lmnkorﬂ!hmbnmwdvbemﬂulxwhlngmﬂ
wsing si models: the uniform stress and elastic similarity models. Model calculations.
ed'medaughbe(molhe( ra:looe the ratio of the total cross-sectional area of the daughter branches to the cross-sectional
area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vincl's rule
mmummmamrrumwmwmofummugnmummmmm
models deviated from da Vinci's rule as th ral daughter branches increased. The
ak:ulaed values of the two models were Iargelr simnilar but differed in wmewm Fueid measurements of Fagus crenata
Abies hometepis also fit this trend, wherein models deviated from da Viner™s rule with increasing relative weights of
Iamaﬂ daughter branches. However, this devistion was small for 8 branching pattern in nature, where empirical
measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the
biomechanical modets in the case of real branching patterns, though the maodel caloulations described the contradiction
between da Vincl's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best,
indicating that stress uniformity is the key constraint nﬁ:r morphobgyh Fagus crenata rather than elastic similarity or
da Vinei's rule. On the other hand, sgd‘mnmemorplmogyu!luel
hamo!eﬂshﬂnd!xdepeﬂdlnqmd!nunhrddwqhmbfmm b
da Vinci's rule.

Citation: Minaming R, Tateno M (2014} Tree Branching: Leonarda da Vincrs Rule versus Biomechasical Modeh. FLoS ONE 9i4) €91535. dot10371/
iuamal nene HA151%

Figure: PLOS One, 2014
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The Sandpile Cellular Automaton

Figure: Xiuhcoatl, the super-computer




Zipf's Law (from G. West, Scale)
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Earthquake frecuency by size
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Earthquake frecuency by size and region
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Figure: Power Law
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The Sandpile Cellular Automaton

I

— STHRT
V43

(A2

|21 2] 1

\ —
| \

g

Figure: Intermediate State
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The Sandpile Cellular Automaton
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Figure: Intermediate State



The Sandpile Cellular Automaton

\
it
| =211 l .
’JF“ 213
\ -1va !
— — |
\ B .

Figure: The unique final state
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The Sandpile Cellular Automaton

A billion grains of sand at the center: Start.

Figure: A very large table



The Sandpile Cellular Automaton




Self-Organized Criticality

PHYSICAL REVIEW
LETTERS

27 JULY 1987

Numpex 4

Self-Organized Criticality: An Explanation of 1// Noise
Per Bak, Chao Tang, and Kurt Wiesenfeld

Physics Department, Brookhaven National Laboratory, Upton. New York 11973
(Received 13 March 1987)

DACS numbare: N8 40 4 00 0N 4

We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized
critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This
picture also yiclds insight into the origin of fractal objects.

Figure: The most cited paper in Physics in the 90's



Self-Organized Criticality

Figure: The original computer calculations.



Real Sand




SOC Timeline
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The Sandpile Cellular Automaton

Brains May Teeter Near Their Tipping
Point
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First relation to geometry

This can be generalized to any graph G (finite, with a sink).

The configuration space of this discrete dynamical system is
meant to be though of as the space of divisors of a graph (or
tropical curve).

There is the subgroup of stable configurations,

and the subgroup of recurrent configurations (a stable
configuration is recurrent if it can be obtained from any other
configuration by adding chips and stabilizing.) Think
probability one in the Markov chain.



First relation to geometry

The sandpile group is the set of recurrent configurations.
This is the same as the "tropical jacobian” of the "tropical
curve” J(G).

It has as many elements as spanning trees has G, that is to

say, te determinan of the "tropical laplacian” (matrix tree
theorem).

But this relaiton to geometry is NOT what we mean to
discuss today.



Zoom in

Figure: Notice the thin graphs inside the triangles
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Rescaling

(A) (B) (©)

(D) (®) (F)

Fig. 2. In (A), (B), (C) and (D), a very large number N of grains of sand is placed
at the origin of the everywhere empty integral lattice, the final relaxed state shows
fractal behavior. Here, as we advance from (A) to (D), we see successive sandpiles
for N = 10° (A), 10* (B), 10° (C), and 10° (D), rescaled by factors of v/N. In (E),
we zoom in on a small region of (D) to show its intricate fractal structure, and, finally,
in (F), we further zoom in on a small portion of (E). We can see proportional growth
occurring in the patterns as the fractal limit appears. The balanced graphs inside the
roughly triangular regions of (F) are tropical curves.
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The Laplacian

® The toppling function H(i,j) defined as follows: Given an
initial state ¢ and its relaxation ¢°, the value of H(i, ) equals
the number of times that there was a toppling at the vertex
(7,/) in the process taking ¢ to ¢°.

® The discrete Laplacian of H is defined by the net flow of sand,

AH(i,j) = H(i—1,))+H(i+1,j)+H(i,j—1)+H(i,j+1)—4H(i,j).



The Laplacian determines the evolution

The toppling function is clearly non-negative on 2 and vanishes at
the boundary. The function AH completely determines the final
state ¢° by the formula:

w°(i,4) = ¢(i,j) + AH(I, j). (1)



The Least Action Principle

It can be shown by induction that the toppling function H satisfies
the Least Action Principle: if p(i,j) + AF(i,j) < 3 is stable, then
F(i,j) > H(i,j). Ostojic noticed that H(i,j) is a piecewise
quadratic function in the usual sandpile.



Tropical Sandpiles

Consider a state  which consists of 3 grains of sand at every
vertex, except at a finite family of points

P — {Pl — (il,jl)a ey Pr= (irajr)}

where we have 4 grains of sand:
@ = (3)+0p, + -+ 0p, = (3) + 0p. (2)

The state ¢° and the evolution of the relaxation can be described
by means of tropical geometry. This was discovered by Caracciolo
et al. while a rigorous mathematical theory to prove this fact has
been given by Kalinin and Shkolnikov.

It is a remarkable fact that, in this case, the toppling function
H(i,j) is piecewise linear (after passing to the scaling limit).



A Tropical Sandpile (Kalinin-Shkolnikov)

(A) (B)

(©) (D)

Fig. 4. The evolution of (3) + 4. Sand falling outside the border disappears. Time
progresses in the sequence (A), (B), (C), and finally (D). Before (A), we add grains
of sand to several points of the constant state (3) (we see their positions as blue
disks given by 5p). Avalanches ensue. At time (A), the avalanches have barely
started. At the end, at time (D), we get a tropical analytic curve on the square 2.
White represents the region with 3 grains of sand while green represent 2, yellow
represents 1, and red represents the zero region. We can think of the blue disks & »
as the genotype of the system, of the state (3) as the nutrient environment, and of
the thin graph given by the tropical function in (D) as the phenotype of the system.

Figure: Time advances from left to right



A Tropical Sandpile
A movie:
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|dea of the Proof (1)

To prove this, one considers the family Fp of functions on € that
are:

(1) piecewise linear with integral slopes,

(2) non-negative over Q and zero at its boundary,
(3) concave, and

(4) not smooth at every point p; of P.

Let Fp be the pointwise minimum of functions in Fp. Then
Fp > H by the Least Action Principle.



|dea of the Proof (2)

Lemma

In the scaling limit H = Fp.

A sketch of a proof. K-S introduce the wave operators W, at the
cellular automaton level and the corresponding tropical wave
operators Gp. Given a fixed vertex p = (ip, jo), we define the wave
operator W, acting on states ¢ of the sandpile as:

Wo(p) := (Tp(p + 0p) — 3p)°,

where T, is the operator that topples once the state ¢ + 4, at p if
at all possible. In a computer simulation, the application of this
operator looks like a wave of topplings spreading from p, while
each vertex topples at most once.



The wave operator (1)

e

Fig. 5. Top: The action of the wave operator W, on a tropical curve. The tropical
curve steps closer to p by an integral step. Thus W), shrinks the face that p belongs

to; the combinatorial morphology of the face that p belongs to, can actually change.

Bottom: The function 1,0, where p is the center of the circle, and its associated
omega-tropical curve are shown.




The wave operator (2)

The first important property of W, is that, for the initial state
¢ := (3) + dp, we can achieve the final state ¢° by successive
applications of the operator W, o--- o W, a large but finite

number of times (in spite of the notation):

% = (Wp, - Wp,)> 0 + dp.

This process decomposes the total relaxation ¢ — ¢° into layers of
controlled avalanching.



The wave operator (3)

The second important property of the wave operator W, is that its
action on a state ¢ = (3) + Af has an interpretation in terms of
tropical geometry. To wit, whenever f is a piecewise linear function
with integral slopes that, in a neighborhood of p, is expressed as
ajyjo + fox + joy, we have that

Wo((3) + Af) = (3) + AW(f),

where W(f) has the same coefficients aj; as f except one, namely
aj-ojo = ajj, + 1. This is to emulate the fact that the support of the
wave is exactly the face where aj;; + iox + joy is the leading part
of f.



The dynamical system

® We will write G, := W;® to denote the operator that applies
W, to (3) + Af until p lies in the corner locus of f.

® |t has an elegant interpretation in terms of tropical geometry:
Gp increases the coefficient aj j, corresponding to a
neighborhood of p lifting the plane lying above p in the graph
of f by integral steps until p belongs to the corner locus of
Gpf. Thus G, has the effect of pushing the tropical curve
closer towards p until it contains p.



End of the Proof

From the properties of the wave operators, it follows immediately
that:
Fp = (Gp1 T Gpr)oo(),

where 0 is the function which is identically zero on Q.
Each intermediate function (Gp, - - - Gpr)k 0 is less than H since

they represent partial relaxations, but their limit belongs to Fp,
and this, in turn, implies that H = Fp.



The Tropical Sandpile model (KGPSKL) (1)

Now, we define a new model, tropical sandpile (TS), reflecting
structural changes when a sandpile evolves. The definition of this
dynamical system is inspired by the mathematics of the previous
section, and TS is not a cellular automaton but it exhibits SOC.



The Tropical Sandpile model (2)

The dynamical system lives on the convex set Q2 = [0, N] x [0, N];
namely, we will consider € to be a very large square. The input
data of the system is a large but finite collection of points

P ={p1,...,pr} with integer coordinates on the square Q. Each
state of the system is an Q-tropical series (and the associated
Q-tropical curve).



Tropical Series

Definition
An Q-tropical series is a piecewise linear function in €2 given by:

F(x,y) = min (a; + ix + jy),

(x,y) (,.J)GA( j Jy)

where the set A is not necessarily finite and F|sq = 0. An
Q-tropical curve is the set where F is not smooth. Each Q-tropical
curve is a locally finite graph satisfying the balancing condition.



The Tropical Sandpile model (3)

The initial state for the dynamical system is Fp = 0, and its final
state is the function Fp defined previously. Notice that the
definition of Fp, while inspired by sandpile theory, uses no
sandpiles or cellular automaton whatsoever. Intermediate states
{Fk}k=1,..r enjoy the property that Fj is not smooth at

p1, P2, .- -, Pk, i.e. the corresponding tropical curve passes through
these points.



The Tropical Sandpile model (4)

In other words, the tropical curve is first attracted to the point p;.
Once it manages to pass through p; for the first time, it continues
to try to pass through {p1, p2}. Once it manages to pass through
{p1,p2}, it proceeds in the same manner towards {p1, p2, p3}. The
same process is repeated until the curve passes through all of

P:{P1,~~-7Pr}-
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The Tropical Sandpile model (5)

Q = [0,100] x [0.100]
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The Tropical Sandpile model (6)

We will call the modification Fr_1 — Fi the k-th avalanche and it
occurs as follows: To the state Fy_1, we apply the tropical
operators Gp,, Gp,, ..., Gp,; Gp,, ... in cyclic order until the
function stops changing; the discreteness of the coordinates of the
points in P ensures that this process is finitel. Again, as before,
while sandpile inspired, the operators G, are defined entirely in
terms of tropical geometry without a mention to sandpiles.

There is a dichotomy: Each application of a G, either does
something changing the shape of the current tropical curve (in this
case Gp, is called an active operator), or does nothing, leaving the
curve intact (if p already belongs to the curve).

LIf the coordinates of the points in P are not integers, the model is
well-defined, but we need to take a limit which is not suitable for computer
simulations.



The Tropical Sandpile model (7)

Definition

The size of the k-th avalanche is the number of distinct active
operators Gp, (that actually do something) used to take the system
from the self-critical state Fx_; to the next self-critical state Fy,
divided by k. In particular, the size sx of the k-th avalanche is a
number between zero and one: 0 < s, <1, and it estimates the
proportional area of the picture which changed during the
avalanche.



Spatial SOC

(A)

(©) (D)

Fig. 6. The first two pictures show the comparison between the classical (A) and
tropical (B) sandpiles for | P| = 100 generic points on the square. In (C), the square
Q has side N = 1000; a large number (| P| = 40000) of grains has been added,
showing the spatial SOC behavior on the tropical model compared to the identity
(D) of the sandpile group on the square of side N = 1000. In the central square
region on (C) (corresponding to the solid block of the otherwise fractal unit), we have a
random tropical curve with edges on the directions (1, 0), (0, 1), and (1, 1), which
is given by a small perturbation of the coefficients of the tropical polynomial defining
the usual square grid.



The Tropical Sandpile model (8)

In the previous example, as the number of points in P grows and
becomes comparable to the number of lattice points in €2, the
tropical sandpile exhibits a phase transition going into spatial SOC
(fractality). This provides the first evidence in favor of SOC on the
tropical sandpile model, but there is a more subtle spatio-temporal
SOC behavior that we proceed to exhibit in the following slides.

While the ordering of the points from the first to the r-th is
important for the specific details of the evolution of the system, its
statistical behavior and the final state are insensitive to it. This we
called the Abelian property.



SOC in tropical geometry

The tropical sandpile dynamics exhibits slow driving avalanching.

Once the tropical dynamical system stops after r steps, we can ask
ourselves what the statistical behavior of the number N(s) of
avalanches of size s is like. We posit that the tropical dynamical
system exhibits spatio-temporal SOC behavior, namely, we have a
power law:

log N(s) = Tlogs + c.

To confirm this, we have performed experiments in the
supercomputing clusters ABACUS and Xiuhcoatl at Cinvestav
(Mexico City); the code is available on GitHub. In the figure
below, we see the graph of log N(s) vs log s for the tropical
(piecewise linear, continuous) sandpile dynamical system, the
resulting experimental 7 in this case was 7 ~ —0.9.



SOC in tropical geometry
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(A) Sandpile dynamical system (B) Tropical dynamical system

Figure 6: A) The power law for sandpil

The logarithm of the frequency is linear on the
logarithm of the avalanche size, except near the right where the avalanches have bigger size than
the half of the system. = [0, 100)%, initially filled with 3 grains everywhere, folluwd by lo“
dropped grains. B) The power-law for the Tropical (pi ise linear,

system. In this computer experiment €2 has a side of l()ll) units and we throw at tandom aset
P of 10000 points (a random large genotype) using two super

p clusters.
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Work in progress: SOC in " Topological Quantum Gravity”
(with R. Lépez Vazquez)

® The dichotomy between continuous and discrete models of
our paper (already appearing in the biological models of
Turing) has an analogue in topological string theory.

® |gbar-Vafa-Nekrasov-Okunkov have argued that, when we
"probe space-time beyond the scale o' and going below
Planck’s scale”, the "resulting fluctuations of space time” can
be computed with a classical cellular automaton (a melting
crystal) representing quantum gravitational foam.

® Their theory is a three-tier system whose levels are respectively

classical geometry (Kahler gravity), tropical geometry (toric
manifolds) and cellular automata (a discrete melting crystal).



Work in progress: SOC in "Quantum Gravity” (with R.
Lépez Vézquez)

The theory described above is also a three-tier system whose levels
are classical complex algebraic geometry, tropical geometry
(analytic tropical curves) and cellular automata (sandpiles). This
seems to be not a coincidence and suggests connections between
our model for SOC and their model for quantum gravitational
foam.



Work in progress: SOC in "Quantum Gravity” (with R.
Lépez Vézquez)

We have progressed bt proving so far that, at the level of partition
functions:

Zsandpile = ZIVNO,

by using the Temperley bijection for the dual graph, and ONLY for
the hexagonal tiling.

(DETAILS: My 2nd talk next week)





