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First Part: Self-Organized Criticality

Figure: La trahison des images, 1928, René Magritte



The naturals under addition

Figure: Ce n’est pas des mathématiques. A super-computer



CV by Leonardo (30 years old)

Figure: “and in paiting I am as good as anyone”



Los cuadernos de Leonardo

Figure: “all branches of the tree, in each of their developments, together
equal the thickness of the tree”



Las citas de Leonardo

Figure: Physical Review Letters, 2011



Las citas de Leonardo

Figure: PLOS One, 2014



The Sandpile Cellular Automaton

Figure: Xiuhcoatl, the super-computer



Zipf’s Law (from G. West, Scale)

Figure: Zipf’s Law



Body Weight

Figure:



Metabolism

Figure:



Earthquake frecuency by size

Figure: Power Law



Earthquake frecuency by size and region

Figure: Power Law



The Sandpile Cellular Automaton

Figure: Intermediate State



The Sandpile Cellular Automaton

Figure: Intermediate State



The Sandpile Cellular Automaton

Figure: The unique final state



The Sandpile Cellular Automaton

Figure: A very large table



The Sandpile Cellular Automaton

Figure:



Self-Organized Criticality

Figure: The most cited paper in Physics in the 90’s



Self-Organized Criticality

Figure: The original computer calculations.



Real Sand



SOC Timeline



The Sandpile Cellular Automaton

Figure: Is the brain in SOC?



First relation to geometry

• This can be generalized to any graph G (finite, with a sink).

• The configuration space of this discrete dynamical system is
meant to be though of as the space of divisors of a graph (or
tropical curve).

• There is the subgroup of stable configurations,

• and the subgroup of recurrent configurations (a stable
configuration is recurrent if it can be obtained from any other
configuration by adding chips and stabilizing.) Think
probability one in the Markov chain.



First relation to geometry

• The sandpile group is the set of recurrent configurations.

• This is the same as the ”tropical jacobian” of the ”tropical
curve” J(G ).

• It has as many elements as spanning trees has G , that is to
say, te determinan of the ”tropical laplacian” (matrix tree
theorem).

• But this relaiton to geometry is NOT what we mean to
discuss today.



Zoom in

Figure: Notice the thin graphs inside the triangles



Rescaling

of Z2 with a large convex figure in the plane. Throughout this
paper, we use the word graph to indicate a collection of line
segments (called edges) that connect points (called vertices)
to each other.

Definition 2. A sandpile model consists of a grid inside a
convex domain � on which we place grains of sand at each
vertex; the number of grains on the vertex (i, j) is denoted
by Ï(i, j) (see Figure 1). Formally, a state is an integer-
valued function Ï : � æ ZØ0. We call a vertex (i, j) unstable
whenever there are four or more grains of sand at (i, j), i.e.,
whenever Ï(i, j) Ø 4. The evolution rule is as follows: any
unstable vertex (i, j) topples spontaneously by sending one
grain of sand to each of its four neighbors (i, j+1), (i, j≠1), (i≠
1, j), (i + 1, j). The sand that falls outside � disappears from
the system. Stable vertices cannot be toppled. Given an initial
state Ï, we will denote by Ï¶ the stable state reached after
all possible topplings have been performed. It is a remarkable
and well-known fact that the final state Ï¶ does not depend
on the order of topplings. The final state Ï¶ is called the
relaxation of the initial state Ï.

Bak and his collaborators proposed the following experi-
ment: take any stable state Ï0 and perturb it at random by
adding a grain of sand at a random location. Denote the relax-
ation of the perturbed state by Ï1, and repeat this procedure.
Thus a sequence of randomly chosen vertices (ik, jk) gives rise
to a sequence of stable states by the rule Ïk+1 = (Ïk + ”ikjk )¶.

The relaxation process (Ïk + ”ikjk) ‘æ Ïk+1 is called an
avalanche‡; its size is the number of vertices that topple during
the relaxation. Given a long enough sequence of uniformly
chosen vertices (ik, jk), we can compute the distribution for
the sizes of the corresponding avalanches. Let N(s) be the
number of avalanches of size s; then the main experimental
observation of (5) is that:

logN(s) = · log s + c.

In other words, the sizes of avalanches satisfy a power law.
In Figure 7A, we have reproduced this result with · ≥ ≠1.2.
This has only very recently been given a rigorous mathe-
matical proof using a deep analysis of random trees on the
two-dimensional integral lattice Z2 (8).

Definition 3. A recurrent state is a stable state appearing
infinitely often, with probability one, in the above dynamical
evolution of the sandpile.

Surprisingly, the recurrent states are exactly those which
can be obtained as a relaxation of a state Ï Ø 3 (pointwise).
The set of recurrent states forms an Abelian group (9) and its
identity exhibits a fractal structure in the scaling limit (Fig. 6);
unfortunately, this fact has resisted a rigorous explanation so
far.

The main point of this paper is to exhibit fully analogous
phenomena in a continuous system (which is not a cellular
automaton) within the field of tropical geometry.

An advantage of the tropical model is that, while it has
self-organized critical behavior, just as the classical model
does, its states look much less chaotic; thus we say that the
tropical model has no combinatorial explosion.

‡We can think of an avalanche as an earthquake.

Mathematical Modeling for Proportional Growth and
Pattern Formation

The dichotomy between continuous mathematical models and
discrete cellular automata has an important example in devel-
opmental biology.

A basic continuous model of pattern formation was o�ered
by Alan Turing in 1952 (10). He suggested that two or more
homogeneously distributed chemical substances, termed mor-
phogens, with di�erent di�using rates and chemical activity,
can self-organize into spatial patterns of di�erent concentra-
tions. This theory was confirmed decades later and can be
applied, for example, to modeling the patterns of fish and
lizard skin (11),(12), or of seashells’ pigmentation (13).

On the discrete modeling side, the most famous model is
the Game of Life developed by Conway in 1970 (14). A state
of this two-dimensional system consists of "live" and "dead"
cells that function according to simple rules. Any live cell dies
if there are fewer than two or more than three live neighbors.
Any dead cell becomes alive if there are three live neighbors.
A very careful control of the initial state produces "oscillators"
and "spaceships" that certainly look fascinating but seem not to
be related to realistic biological models. Nevertheless, a strong
philosophical conclusion of the Game of Life is that extremely
simple rules can produce behavior of arbitrary complexity. A
more realistic cellular automaton has recently been derived
from the continuous reaction-di�usion model of Turing. In (15),
the transformation of the juvenile white ocelli skin patterns
of the lizard Timon lepidus into a green and black labyrinth
was observed. In this study, the authors presented the skin
squamae of lizard as a hexagonal grid, where the color of each
individual cell depended on the color states of neighboring
positions. This cell automaton could successfully generate
patterns coinciding with those on the skin of adult lizards.

(A) (B) (C)

(D) (E) (F)

Fig. 2. In (A), (B), (C) and (D), a very large number N of grains of sand is placed
at the origin of the everywhere empty integral lattice, the final relaxed state shows
fractal behavior. Here, as we advance from (A) to (D), we see successive sandpiles
forN = 103 (A), 104 (B), 105 (C), and 106 (D), rescaled by factors of

Ô
N . In (E),

we zoom in on a small region of (D) to show its intricate fractal structure, and, finally,
in (F), we further zoom in on a small portion of (E). We can see proportional growth
occurring in the patterns as the fractal limit appears. The balanced graphs inside the
roughly triangular regions of (F) are tropical curves.

Pattern formation is related to an important problem in
developmental biology: how to explain proportional growth.
It is not clear why di�erent parts of animal or human bodies

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Kalinin et al.

Figure: Notice the thin graphs inside the triangles



The Laplacian

• The toppling function H(i , j) defined as follows: Given an
initial state φ and its relaxation ϕ◦, the value of H(i , j) equals
the number of times that there was a toppling at the vertex
(i , j) in the process taking ϕ to ϕ◦.

• The discrete Laplacian of H is defined by the net flow of sand,

∆H(i , j) := H(i−1, j)+H(i+1, j)+H(i , j−1)+H(i , j+1)−4H(i , j).



The Laplacian determines the evolution

The toppling function is clearly non-negative on Ω and vanishes at
the boundary. The function ∆H completely determines the final
state ϕ◦ by the formula:

ϕ◦(i , j) = ϕ(i , j) + ∆H(i , j). (1)



The Least Action Principle

It can be shown by induction that the toppling function H satisfies
the Least Action Principle: if ϕ(i , j) + ∆F (i , j) ≤ 3 is stable, then
F (i , j) ≥ H(i , j). Ostojic noticed that H(i , j) is a piecewise
quadratic function in the usual sandpile.



Tropical Sandpiles

Consider a state ϕ which consists of 3 grains of sand at every
vertex, except at a finite family of points

P = {p1 = (i1, j1), . . . , pr = (ir , jr )}

where we have 4 grains of sand:

ϕ := 〈3〉+ δp1 + · · ·+ δpr = 〈3〉+ δP . (2)

The state ϕ◦ and the evolution of the relaxation can be described
by means of tropical geometry. This was discovered by Caracciolo
et al. while a rigorous mathematical theory to prove this fact has
been given by Kalinin and Shkolnikov.
It is a remarkable fact that, in this case, the toppling function
H(i , j) is piecewise linear (after passing to the scaling limit).



A Tropical Sandpile (Kalinin-Shkolnikov)

(A) (B)

(C) (D)

Fig. 4. The evolution of È3Í + ”P . Sand falling outside the border disappears. Time
progresses in the sequence (A), (B), (C), and finally (D). Before (A), we add grains
of sand to several points of the constant state È3Í (we see their positions as blue
disks given by ”P ). Avalanches ensue. At time (A), the avalanches have barely
started. At the end, at time (D), we get a tropical analytic curve on the square �.
White represents the region with 3 grains of sand while green represent 2, yellow
represents 1, and red represents the zero region. We can think of the blue disks ”P
as the genotype of the system, of the state È3Í as the nutrient environment, and of
the thin graph given by the tropical function in (D) as the phenotype of the system.

It can be shown by induction that the toppling function H
satisfies the Least Action Principle: if Ï(i, j) + �F (i, j) Æ 3 is
stable, then F (i, j) Ø H(i, j). Ostojic (36) noticed that H(i, j)
is a piecewise quadratic function in the context of Example 1.

Consider a state Ï which consists of 3 grains of sand at
every vertex, except at a finite family of points

P = {p1 = (i1, j1), . . . , pr = (ir, jr)}

where we have 4 grains of sand:

Ï := È3Í + ”p1 + · · · + ”pr = È3Í + ”P . [3]

The state Ï¶ and the evolution of the relaxation can be
described by means of tropical geometry (the final picture
(D) of Figure 4 is a tropical curve). This was discovered by
Caracciolo et al. (37) while a rigorous mathematical theory
to prove this fact has been given by Kalinin et al. (38), which
we review presently. It is a remarkable fact that, in this case,
the toppling function H(i, j) is piecewise linear (after passing
to the scaling limit).

To prove this, one considers the family FP of functions
on � that are: (1) piecewise linear with integral slopes, (2)
non-negative over � and zero at its boundary, (3) concave,
and (4) not smooth at every point pi of P . Let FP be the
pointwise minimum of functions in FP . Then FP Ø H by the
Least Action Principle (since �FP Æ 0,�FP (pi) < 0).

Lemma 1. In the scaling limit H = FP .

A sketch of a proof. We introduce the wave operators Wp

(39, 40) at the cellular automaton level and the corresponding

tropical wave operators Gp. Given a fixed vertex p = (i0, j0),
we define the wave operator Wp acting on states Ï of the
sandpile as:

Wp(Ï) := (Tp(Ï + ”p) ≠ ”p)¶,

where Tp is the operator that topples the state Ï+”p at p once,
if it’s possible to topple p at all. In a computer simulation,
the application of this operator looks like a wave of topplings
spreading from p, while each vertex topples at most once.

The first important property of Wp is that, for the initial
state Ï := È3Í + ”P , we can achieve the final state Ï¶ by
successive applications of the operator Wp1 ¶ · · · ¶Wpr a large
but finite number of times (in spite of the notation):

Ï¶ = (Wp1 · · ·Wpr )ŒÏ + ”P .

This process decomposes the total relaxation Ï ‘æ Ï¶ into
layers of controlled avalanching.

The second important property of the wave operator Wp is
that its action on a state Ï = È3Í+�f has an interpretation in
terms of tropical geometry. To wit, whenever f is a piecewise
linear function with integral slopes that, in a neighborhood of
p, is expressed as ai0j0 + i0x+ j0y, we have

Wp(È3Í + �f) = È3Í + �W (f),

where W (f) has the same coe�cients aij as f except one,
namely aÕ

i0j0 = ai0j0+1. This is to account for the fact that the
support of the wave is exactly the face where ai0j0 + i0x+ j0y
is the leading part of f .

We will write Gp := WŒ
p to denote the operator that

applies Wp to È3Í + �f until p lies in the corner locus of f .We
repeat that it has an elegant interpretation in terms of tropical
geometry: Gp increases the coe�cient ai0j0 corresponding to
a neighborhood of p, lifting the plane lying above p in the
graph of f by integral steps until p belongs to the corner locus
of Gpf . Thus Gp has the e�ect of pushing the tropical curve
towards p (Figure 5) until it contains p.

From the properties of the wave operators, it follows imme-
diately that:

FP = (Gp1 · · ·Gpr )Œ 0,

where 0 is the function which is identically zero on �. All
intermediate functions (Gp1 · · ·Gpr )k 0 are less than H since
they represent partial relaxations, but their limit belongs to
FP , and this, in turn, implies that H = FP .

Conclusion. We have shown that the toppling function H
for Eq. 3 is piecewise linear. Thus, applying Eq. 2, we obtain
that Ï¶ is equal to 3 everywhere but the locus where �H ”= 0,
i.e. its corner locus, namely, an �-tropical curve (Figure 4).

Definition 5. (41) An �-tropical series is a piecewise linear
function on � given by:

F (x, y) = min
(i,j)œA

(aij + ix+ jy),

where the set A is not necessarily finite and F |ˆ� = 0. An
�-tropical curve is the set where F is not smooth. Each �-
tropical curve is a locally finite graph satisfying the balancing
condition.
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Figure: Time advances from left to right



A Tropical Sandpile

A movie:



Idea of the Proof (1)

To prove this, one considers the family FP of functions on Ω that
are:

(1) piecewise linear with integral slopes,

(2) non-negative over Ω and zero at its boundary,

(3) concave, and

(4) not smooth at every point pi of P.

Let FP be the pointwise minimum of functions in FP . Then
FP ≥ H by the Least Action Principle.



Idea of the Proof (2)

Lemma
In the scaling limit H = FP .

A sketch of a proof. K-S introduce the wave operators Wp at the
cellular automaton level and the corresponding tropical wave
operators Gp. Given a fixed vertex p = (i0, j0), we define the wave
operator Wp acting on states ϕ of the sandpile as:

Wp(ϕ) := (Tp(ϕ+ δp)− δp)◦,

where Tp is the operator that topples once the state ϕ+ δp at p if
at all possible. In a computer simulation, the application of this
operator looks like a wave of topplings spreading from p, while
each vertex topples at most once.



The wave operator (1)

•
p

Wp

•
p

Fig. 5. Top: The action of the wave operator Wp on a tropical curve. The tropical
curve steps closer to p by an integral step. Thus Wp shrinks the face that p belongs
to; the combinatorial morphology of the face that p belongs to, can actually change.
Bottom: The function Gp0, where p is the center of the circle, and its associated
omega-tropical curve are shown.

Remark 1. Tropical curves consist of edges, such that to
each direction of the edges there corresponds a line-shaped
pattern (a string) such as the one encountered in Figure 2;
these patterns can be computed (18). In simulations, we have
observed that these strings act like the renormalization group
and, thus, ensure the proportional growth of the quadratic
patches in Figure 2. The same occurs in other sandpile models
with proportional growth, which suggests that tropical geome-
try is a less reductionist tool than cellular automata to study
this phenomenon.

The Tropical Sandpile Model

Here, we define a new model, the tropical sandpile (TS), reflect-
ing structural changes when a sandpile evolves. The definition
of this dynamical system is inspired by the mathematics of
the previous section; TS is not a cellular automaton but it
exhibits SOC.

The dynamical system lives on the convex set � = [0, N ] ◊
[0N ]; we will consider � to be a very large square. The input
data of the system is a large but finite collection of points
P = {p1, . . . , pr} with integer coordinates on the square �.
Each state of the system is an �-tropical series (and the
associated �-tropical curve).

The initial state for the dynamical system is F0 = 0, and its
final state is the function FP defined previously. Notice that
the definition of FP , while inspired by sandpile theory, uses
no sandpiles or cellular automata whatsoever. Intermediate
states {Fk}k=1,...,r satisfy the property that Fk is not smooth
at p1, p2, . . . , pk; i.e. the corresponding tropical curve passes
through these points.

In other words, the tropical curve is first attracted to the
point p1. Once it manages to pass through p1 for the first
time, it continues to try to pass through {p1, p2}. Once it
manages to pass through {p1, p2}, it proceeds in the same
manner towards {p1, p2, p3}. This process is repeated until
the curve passes through all of P = {p1, . . . , pr}.

(A) (B)

(C) (D)

Fig. 6. The first two pictures show the comparison between the classical (A) and
tropical (B) sandpiles for |P | = 100 generic points on the square. In (C), the square
� has side N = 1000; a large number (|P | = 40000) of grains has been added,
showing the spatial SOC behavior on the tropical model compared to the identity
(D) of the sandpile group on the square of side N = 1000. In the central square
region on (C) (corresponding to the solid block of the otherwise fractal unit), we have a
random tropical curve with edges on the directions (1, 0), (0, 1), and (±1, 1), which
is given by a small perturbation of the coefficients of the tropical polynomial defining
the usual square grid.

We will call the modification Fk≠1 æ Fk the k-th avalanche.
It occurs as follows: To the state Fk≠1 we apply the tropical
operators Gp1 , Gp2 , . . . , Gpk ;Gp1 , . . . in cyclic order until the
function stops changing; the discreteness of the coordinates of
the points in P ensures that this process is finite�. Again, as
before, while sandpile-inspired, the operators Gp are defined
entirely in terms of tropical geometry without mention of
sandpiles.

There is a dichotomy: Each application of an operator
Gp, either does something to change the shape of the current
tropical curve (in this case Gp is called an active operator), or
does nothing, leaving the curve intact (if p already belongs to
the curve).

Definition 6. The size of the k-th avalanche is the number
of distinct active operators Gpi used to take the system from
the self-critical state Fk≠1 to the next self-critical state Fk,
divided by k. In particular, the size sk of the k-th avalanche is
a number between zero and one, 0 Æ sk Æ 1, and it estimates
the proportional area of the picture that changed during the
avalanche.

In the previous example, as the number of points in P
grows and becomes comparable to the number of lattice points
in �, the tropical sandpile exhibits a phase transition going
into spatial SOC (fractality). This provides the first evidence
in favor of SOC on the tropical sandpile model, but there is

� If the coordinates of the points in P are not integers, the model is well-defined, but we need to take
a limit (see (41)), which is not suitable for computer simulations.
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The wave operator (2)

The first important property of Wp is that, for the initial state
ϕ := 〈3〉+ δP , we can achieve the final state ϕ◦ by successive
applications of the operator Wp1 ◦ · · · ◦Wpr a large but finite
number of times (in spite of the notation):

ϕ◦ = (Wp1 · · ·Wpr )
∞ϕ+ δP .

This process decomposes the total relaxation ϕ 7→ ϕ◦ into layers of
controlled avalanching.



The wave operator (3)

The second important property of the wave operator Wp is that its
action on a state ϕ = 〈3〉+ ∆f has an interpretation in terms of
tropical geometry. To wit, whenever f is a piecewise linear function
with integral slopes that, in a neighborhood of p, is expressed as
ai0j0 + i0x + j0y , we have that

Wp(〈3〉+ ∆f ) = 〈3〉+ ∆W (f ),

where W (f ) has the same coefficients aij as f except one, namely
a′i0j0 = ai0j0 + 1. This is to emulate the fact that the support of the
wave is exactly the face where ai0j0 + i0x + j0y is the leading part
of f .



The dynamical system

• We will write Gp := W∞
p to denote the operator that applies

Wp to 〈3〉+ ∆f until p lies in the corner locus of f .

• It has an elegant interpretation in terms of tropical geometry:
Gp increases the coefficient ai0j0 corresponding to a
neighborhood of p lifting the plane lying above p in the graph
of f by integral steps until p belongs to the corner locus of
Gpf . Thus Gp has the effect of pushing the tropical curve
closer towards p until it contains p.



End of the Proof

From the properties of the wave operators, it follows immediately
that:

FP = (Gp1 · · ·Gpr )
∞ 0,

where 0 is the function which is identically zero on Ω.

Each intermediate function (Gp1 · · ·Gpr )
k 0 is less than H since

they represent partial relaxations, but their limit belongs to FP ,
and this, in turn, implies that H = FP .



The Tropical Sandpile model (KGPSKL) (1)

Now, we define a new model, tropical sandpile (TS), reflecting
structural changes when a sandpile evolves. The definition of this
dynamical system is inspired by the mathematics of the previous
section, and TS is not a cellular automaton but it exhibits SOC.



The Tropical Sandpile model (2)

The dynamical system lives on the convex set Ω = [0,N]× [0,N];
namely, we will consider Ω to be a very large square. The input
data of the system is a large but finite collection of points
P = {p1, . . . , pr} with integer coordinates on the square Ω. Each
state of the system is an Ω-tropical series (and the associated
Ω-tropical curve).



Tropical Series

Definition
An Ω-tropical series is a piecewise linear function in Ω given by:

F (x , y) = min
(i ,j)∈A

(aij + ix + jy),

where the set A is not necessarily finite and F |∂Ω = 0. An
Ω-tropical curve is the set where F is not smooth. Each Ω-tropical
curve is a locally finite graph satisfying the balancing condition.



The Tropical Sandpile model (3)

The initial state for the dynamical system is F0 = 0, and its final
state is the function FP defined previously. Notice that the
definition of FP , while inspired by sandpile theory, uses no
sandpiles or cellular automaton whatsoever. Intermediate states
{Fk}k=1,...,r enjoy the property that Fk is not smooth at
p1, p2, . . . , pk , i.e. the corresponding tropical curve passes through
these points.



The Tropical Sandpile model (4)

In other words, the tropical curve is first attracted to the point p1.
Once it manages to pass through p1 for the first time, it continues
to try to pass through {p1, p2}. Once it manages to pass through
{p1, p2}, it proceeds in the same manner towards {p1, p2, p3}. The
same process is repeated until the curve passes through all of
P = {p1, . . . , pr}.



The Tropical Sandpile model (5)



The Tropical Sandpile model (6)

We will call the modification Fk−1 → Fk the k-th avalanche and it
occurs as follows: To the state Fk−1, we apply the tropical
operators Gp1 ,Gp2 , . . . ,Gpk ;Gp1 , . . . in cyclic order until the
function stops changing; the discreteness of the coordinates of the
points in P ensures that this process is finite1. Again, as before,
while sandpile inspired, the operators Gp are defined entirely in
terms of tropical geometry without a mention to sandpiles.

There is a dichotomy: Each application of a Gp either does
something changing the shape of the current tropical curve (in this
case Gp is called an active operator), or does nothing, leaving the
curve intact (if p already belongs to the curve).

1If the coordinates of the points in P are not integers, the model is
well-defined, but we need to take a limit which is not suitable for computer
simulations.



The Tropical Sandpile model (7)

Definition
The size of the k-th avalanche is the number of distinct active
operators Gpi (that actually do something) used to take the system
from the self-critical state Fk−1 to the next self-critical state Fk ,
divided by k . In particular, the size sk of the k-th avalanche is a
number between zero and one: 0 ≤ sk ≤ 1, and it estimates the
proportional area of the picture which changed during the
avalanche.



Spatial SOC

•
p

Wp

•
p

Fig. 5. Top: The action of the wave operator Wp on a tropical curve. The tropical
curve steps closer to p by an integral step. Thus Wp shrinks the face that p belongs
to; the combinatorial morphology of the face that p belongs to, can actually change.
Bottom: The function Gp0, where p is the center of the circle, and its associated
omega-tropical curve are shown.

Remark 1. Tropical curves consist of edges, such that to
each direction of the edges there corresponds a line-shaped
pattern (a string) such as the one encountered in Figure 2;
these patterns can be computed (18). In simulations, we have
observed that these strings act like the renormalization group
and, thus, ensure the proportional growth of the quadratic
patches in Figure 2. The same occurs in other sandpile models
with proportional growth, which suggests that tropical geome-
try is a less reductionist tool than cellular automata to study
this phenomenon.

The Tropical Sandpile Model

Here, we define a new model, the tropical sandpile (TS), reflect-
ing structural changes when a sandpile evolves. The definition
of this dynamical system is inspired by the mathematics of
the previous section; TS is not a cellular automaton but it
exhibits SOC.

The dynamical system lives on the convex set � = [0, N ] ◊
[0N ]; we will consider � to be a very large square. The input
data of the system is a large but finite collection of points
P = {p1, . . . , pr} with integer coordinates on the square �.
Each state of the system is an �-tropical series (and the
associated �-tropical curve).

The initial state for the dynamical system is F0 = 0, and its
final state is the function FP defined previously. Notice that
the definition of FP , while inspired by sandpile theory, uses
no sandpiles or cellular automata whatsoever. Intermediate
states {Fk}k=1,...,r satisfy the property that Fk is not smooth
at p1, p2, . . . , pk; i.e. the corresponding tropical curve passes
through these points.

In other words, the tropical curve is first attracted to the
point p1. Once it manages to pass through p1 for the first
time, it continues to try to pass through {p1, p2}. Once it
manages to pass through {p1, p2}, it proceeds in the same
manner towards {p1, p2, p3}. This process is repeated until
the curve passes through all of P = {p1, . . . , pr}.

(A) (B)

(C) (D)

Fig. 6. The first two pictures show the comparison between the classical (A) and
tropical (B) sandpiles for |P | = 100 generic points on the square. In (C), the square
� has side N = 1000; a large number (|P | = 40000) of grains has been added,
showing the spatial SOC behavior on the tropical model compared to the identity
(D) of the sandpile group on the square of side N = 1000. In the central square
region on (C) (corresponding to the solid block of the otherwise fractal unit), we have a
random tropical curve with edges on the directions (1, 0), (0, 1), and (±1, 1), which
is given by a small perturbation of the coefficients of the tropical polynomial defining
the usual square grid.

We will call the modification Fk≠1 æ Fk the k-th avalanche.
It occurs as follows: To the state Fk≠1 we apply the tropical
operators Gp1 , Gp2 , . . . , Gpk ;Gp1 , . . . in cyclic order until the
function stops changing; the discreteness of the coordinates of
the points in P ensures that this process is finite�. Again, as
before, while sandpile-inspired, the operators Gp are defined
entirely in terms of tropical geometry without mention of
sandpiles.

There is a dichotomy: Each application of an operator
Gp, either does something to change the shape of the current
tropical curve (in this case Gp is called an active operator), or
does nothing, leaving the curve intact (if p already belongs to
the curve).

Definition 6. The size of the k-th avalanche is the number
of distinct active operators Gpi used to take the system from
the self-critical state Fk≠1 to the next self-critical state Fk,
divided by k. In particular, the size sk of the k-th avalanche is
a number between zero and one, 0 Æ sk Æ 1, and it estimates
the proportional area of the picture that changed during the
avalanche.

In the previous example, as the number of points in P
grows and becomes comparable to the number of lattice points
in �, the tropical sandpile exhibits a phase transition going
into spatial SOC (fractality). This provides the first evidence
in favor of SOC on the tropical sandpile model, but there is

� If the coordinates of the points in P are not integers, the model is well-defined, but we need to take
a limit (see (41)), which is not suitable for computer simulations.

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Kalinin et al.



The Tropical Sandpile model (8)

In the previous example, as the number of points in P grows and
becomes comparable to the number of lattice points in Ω, the
tropical sandpile exhibits a phase transition going into spatial SOC
(fractality). This provides the first evidence in favor of SOC on the
tropical sandpile model, but there is a more subtle spatio-temporal
SOC behavior that we proceed to exhibit in the following slides.

While the ordering of the points from the first to the r -th is
important for the specific details of the evolution of the system, its
statistical behavior and the final state are insensitive to it. This we
called the Abelian property.



SOC in tropical geometry

The tropical sandpile dynamics exhibits slow driving avalanching.

Once the tropical dynamical system stops after r steps, we can ask
ourselves what the statistical behavior of the number N(s) of
avalanches of size s is like. We posit that the tropical dynamical
system exhibits spatio-temporal SOC behavior, namely, we have a
power law:

logN(s) = τ log s + c.

To confirm this, we have performed experiments in the
supercomputing clusters ABACUS and Xiuhcoatl at Cinvestav
(Mexico City); the code is available on GitHub. In the figure
below, we see the graph of logN(s) vs log s for the tropical
(piecewise linear, continuous) sandpile dynamical system, the
resulting experimental τ in this case was τ ∼ −0.9.



SOC in tropical geometry



Work in progress: SOC in ”Topological Quantum Gravity”
(with R. López Vázquez)

• The dichotomy between continuous and discrete models of
our paper (already appearing in the biological models of
Turing) has an analogue in topological string theory.

• Iqbar-Vafa-Nekrasov-Okunkov have argued that, when we
”probe space-time beyond the scale α′ and going below
Planck’s scale”, the ”resulting fluctuations of space time” can
be computed with a classical cellular automaton (a melting
crystal) representing quantum gravitational foam.

• Their theory is a three-tier system whose levels are respectively
classical geometry (Kähler gravity), tropical geometry (toric
manifolds) and cellular automata (a discrete melting crystal).



Work in progress: SOC in ”Quantum Gravity” (with R.
López Vázquez)

The theory described above is also a three-tier system whose levels
are classical complex algebraic geometry, tropical geometry
(analytic tropical curves) and cellular automata (sandpiles). This
seems to be not a coincidence and suggests connections between
our model for SOC and their model for quantum gravitational
foam.



Work in progress: SOC in ”Quantum Gravity” (with R.
López Vázquez)

We have progressed bt proving so far that, at the level of partition
functions:

ZSandpile = ZIVNO,

by using the Temperley bijection for the dual graph, and ONLY for
the hexagonal tiling.

(DETAILS: My 2nd talk next week)




