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Understanding time scales is key for
many socio-ecological problems
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|dentity the problem

* Time scales of social systems
* Time scales of ecological systems — hard to change

* Time scales for decision makers



Time scale of ecological
response’?

 Marine protected areas have been implemented in
California (and around the world)

e Can we say that they are working?



Transient responses of fished populations to marine reserve
establishment

J. Wilson White?!, Louis W. Botsford?, Alan Hastings?, Marissa L. Baskett®, David M. Kaplan®,
& Lewis A.K. Barnett®
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Problem setup is simple

* Approximate the nonlinear (density dependent)
dynamics by a linear model

Nt+1 = ANq

I
AT wy,
B=lm—-=
t—=% A VW,

limA{N, « BN, * w,
t—= oo



Important to develop general
orinciples of response

* Time scale of response depends on state of

perturbed (fished) system; starting point is how far
the system is from a stable age distribution

(a) o 8 Unfished population
5
CZ

Age

' } Fishing rate ! § Fishing rate
. } Fishing duration, + § Fishing duration !
or ! or I
' | Age at maturity ' Age at maturity .

(b) , 2 Effects of fishing: Effects of fishing:
g8 = Small distance (D) * Large distance (D)
c 3 all angle (8) ... * Large angle (8)

Apge Age



Approach now being used to develop
monitoring plan for MLPA marine
reserves — challenges of data-model
interface

e Kaplan et al Ecological Applications in press
 Yamane et al submitted

* Using models to explain response over realistic
time scales using age structure and estimates of
fishing pressure



Even ‘linear’ transients are important,
but of course more complex with
density dependence

Persistence of Transients in Spatially
Structured Ecological Models

Alan Hastings* and Kevin Higgins

SCIENCE < VOL. 263 * 25 FEBRUARY 1994 1133
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Fig. 1. Dynamics of a spatially structured model (1-3) of a population with pelagic larvae along a
coastline as a function of the growth rate r. In all cases, the initial conditions were chosen randomly
in space from a uniform distribution, and [ = B0O. The presence of long transients is apparent from
the plots for all values of r = 3.25.



Two patches, single species
Hastings, 1993, Gyllenberg et al 1993

jf;r{r) - f[ri! xi(t)]!

f(?', x) = F.Jf(l - JC), Alternate growth




Two patches, single species
Hastings, 1993, Gyllenberg et al 1993
X(t) = f1r., x.(0)],

f(r, x) = rx(1 — x), Alternate growth

x,(t + 1) = %) + D[X,(1) — X,(1)] And then dispersal
x(t + 1) = X,(1) + D[X,(t) — X)),




But what do the dynamics look like
on ecologically realistic time scales?

e Choose r=3.8, D=0.15

* Follow population sizes through time for different
choices of initial conditions

e Red dot is current population levels, line comes
from the previous population levels



Population in patch 2

Three different initial conditions

t=0

t=0

t=0

Population in patch 1

 Two ends of the line represent population in two
patches in two successive years; note change
between in phase (synchronous, along 45 degree
line) and out of phase (across 45 degree line)



Analytic treatment of transients in coupled
patches (Wysham & Hastings, BMB, 2008; H

and W, Ecol Letters 2010;) helps to
determine when, and how common

* Depends on understanding of crises

* Occurs when an attractor ‘collides’ with another solution as
a parameter is changed

e Typically produces transients

e Can look at how transient length scales with parameter
values

e Start with 2 patches and Ricker local dynamics






Weak coupling Strong coupling



Entangled basins of attraction
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Period 2 orbpits, Tixed points, and
unstable manifolds: multiple
heteroclinic connections and one
heteroclinic tangle
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Campatitar 2

As a start to understanding --Saddles are
a first simple way to approach transients

e Start with simplest example
e Lotka-Volterra competition
e Saddle is an equilibrium

.
8 N Transients: the key to long-term
5 N ecological understanding?
4 H‘“‘*H Alan Hastings
3 H'H“mh
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As a start to understanding --Saddles are
a first simple way to approach transients

e Start with simplest example
e Lotka-Volterra competition
e Saddle is an equilibrium

e Start at analytic understanding

e Laboratory example
e Tribolium
e Saddle is a 2-cycle

Compaelitor 1

TRENDS in Ecology & Evolub:

 Complex non-spatial model (plankton)



Transient can be important for
coexistence

Available online at www.sciencedirect.com
Cb Theoretical
SCIENCE DIRECT?®
@ Population

ACADEMIC Blology

PRESS Theoretical Population Biology 64 (2003) 431-438

http:/www.elsevier.com/locate/ytpbi

Spatial mechanisms for coexistence of species sharing a common
natural enemy

. Ak ; b
Aaron A. King™" and Alan Hastings’



Instrinsic growth rate

ni(e+ 1) =[lNi(0) /(P 1)),

pilt+1) = Z ¢; N}U)“ — Ji(P;(1))),
Ji(P) =|exp(—xP).

Probability the host is not
parasitized — 0 term in the
Poisson distribution

Random movement




* Mean transient
coexistence
duration. Each
row depicts a
distinct slice
through the six-
dimensional
parameter space.

log a, / o, 0.8 -0.8 log o, / 0.8 -0.8




Can we make this more
systematic?
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Hastings et al., Science 361, eaat6412 (2018) 7 September 2018

Transient phenomena in ecology

Alan Hastings'*, Karen C. Abbott®’, Kim Cuddington®, Tessa Francis®, Gabriel Gellner”’,
Ying-Cheng Lai®, Andrew Morozov”®, Sergei Petrovskii’,
Katherine Scranton®, Mary Lou Zeeman'®

The importance of transient dynamics in ecological systems and in the models that describe
them has become increasingly recognized. However, previous work has typically treated

each instance of these dynamics separately. We review both empirical examples and model
systems, and outline a classification of transient dynamics based on ideas and concepts

from dynamical systems theory. This classification provides ways to understand the likelihood
of transients for particular systems, and to guide investigations to determine the timing

of sudden switches in dynamics and other characteristics of transients. Implications for both
management and underlying ecological theories emerge.



Long transients in ecology:
theory and applications
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Use ideas from dynamical systems
to classity long transients

 Show when they will arise



What do we mean by “long transients™?

- Transient: dynamics that occur when a system is not at
equilibrium
- Equilibrium: an asymptotic state (point, limit cycle,
chaos); a system at this state will stay there indefinitely
unless perturbed

- Long transient: a transient that lasts “longer than you’d think”
« roughly, dozens of generations or more
- long enough that it really looks like a stable equilibrium

transient dynamics equilibrium dynamics
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What do we mean by “long transients™?

- Transient: dynamics that occur when a system is not at
equilibrium
- Equilibrium: an asymptotic state (point, limit cycle,
chaos); a system at this state will stay there indefinitely
unless perturbed

- Long transient: a transient that lasts “longer than you’d think”
« roughly, dozens of generations or more
- long enough that it really looks like asymptotic behavior

transient dynamics equilibrium dynamics
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More empirical examples



Table 2. Empirical evidence for long ecological transients.

Duration

Population(s) Observed pattern

Generations Years

Laboratory population Switch from a regime with an almost constant density 15 ~15
of beetles to large-amplitude oscillations (70 weeks)
(Tribolium spp.) (25)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 1to5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish-dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)

Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 10
the Caribbean (47, 48) 50 to 100 (macroalgae)

Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)

Dungeness crab Large-amplitude transient oscillations with further 10to 15 45
(Cancer magister) (53) relaxation to equilibrium

Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to & (zooplankton)
temperate lakes in
Germany (26)

Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05to 0.15
chemostat and of some species (3 to 8 weeks)
temperate
lakes (72)

Laboratory microbial Slow switch between alternative stable states 20 to 40 0.11to 0.21
communities (56) (6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)

Extinction debt Long-term extinction of populations, occurring 20 to 100 (or more) 110 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]

Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish): 40
in watersheds in western biodiversity patterns after restoration 40 (invertebrates)

North Carolina,
USA (49)
Modeled spruce budworm Budworm outbreaks driven by slow 5 (refoliation): 50

outbreaks in balsam
fir forests (2)

changes in condition of fir foliage

50+ (budworm)



Duration

Population(s) Observed pattern
Generations Years

Laboratory population Switch from a regime with an almost constant density 15 ~15
of beetles to large-amplitude oscillations (70 weeks)
(Tribolium spp.) (25)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 1to 5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish—dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)
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Figure 2. Transient dynamics are shown for a laboratory population of Tribolium,
as reproduced with permission from [E]. For one replicate (a), the population num-
bers (of larvae, pupae and adults) go through a period of time of approximate
constancy, and then the dynamics change so that a two-point cycle is observed.
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of beetles
(Tribolium spp.) (25)

T o B S B S T T T S S e e m s e A

to large-amplitude oscillations

(70 weeks)

Growth of macrophytes in
shallow eutrophic lakes
in the Netherlands (46)

Switch from a macrophyte-dominated state to a turbid
water state

Population of
large-bodied
benthic fishes
on the Scotian Shelf
of Canada's
east coast (27)

Switch from a forage fish (and macroinvertebrate)-dominated

state to a benthic fish—dominated state

Coral and microalgae in
the Caribbean (47, 48)

Switch between cyclic and noncyclic regimes, or between

Dungeness crab
(Cancer magister) (53)

\.r)‘\;ll\; Icm;ll T u;l rererTit 'JUI ;UUI\J;LJ'
Large-amplitude transient oscillations with further

relaxation to equilibrium

interactions in
temperate lakes in
Germany (26)
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50 to 100 (macroalgae)
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Planktonic species in
chemostat and
temperate
lakes (72)

Long-term variation of species densities, with extinction
of some species

~0.051t0 0.15
(3 to 8 weeks)

Laboratory microbial
communities (56)

011to 0.21
(6 to 12 weeks)

Grass community
in abandoned
agricultural fields
in the Netherlands (57)

Long-term existence of a large number of alternative
transient states

Extinction debt
phenomena as
a consequence
of habitat loss
[plants, birds, fish,

lichens, and others (60)]

Long-term extinction of populations, occurring
either steadily or via oscillations

20 to 100 (or more)

110 100




Stochastic Dynamics and Deterministic
Skeletons: Population Behavior of
Dungeness Crab

Kevin Higgins,* Alan Hastings, Jacob N. Sarvela,
Louis W. Botsford

www.sciencemag.org ¢ SCIENCE « VOL. 276 « 30 MAY 1997




Detailed model of Dungeness crab
dynamics
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Detailed model of Dungeness crab
dynamics
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Observed harvests and one step ahead predictions



Detailed model of Dungeness crab ~ Observed harvests and one step ahead predictions
dynamics
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Table 2. Empirical evidence for long ecological transients.

Duration

Population(s) Observed pattern

Generations Years

Laboratory population Switch from a regime with an almost constant density 15 =15
of beetles to large-amplitude oscillations (70 weeks)
(Triboliumsppy@5)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 lto 5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish-dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)

Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 10

€ Caropean (a7, 43) DO 10 100 (macroagae) ]

Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)

Dungeness crab Large-amplitude transient oscillations with further 10to 15 45 I

TTIUTTY

Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to 8 (zooplankton)
temperate lakes in
Germany (26)

Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05to 0.15
chemostat and of some species (3 to 8 weeks)
temperate
lakes (72)

Laboratory microbial Slow switch between alternative stable states 20 to 40 0.11to 0.21

communities (56)

(6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)
Extinction debt Long-term extinction of populations. occurring 20 to 100 (or more) 110 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]
Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish): 40

in watersheds in western
North Carolina,
USA (49)

biodiversity patterns after restoration

40 (invertebrates)

Modeled spruce budworm
outbreaks in balsam
fir forests (2)

Budworm outbreaks driven by slow
changes in condition of fir foliage

5 (refoliation): 50
50+ (budworm)



Vole density index

1t

D "

1970

1980

1990
Year

2000

2010

Population

abundance of voles in
northern Sweden,
showing a transition
from

large-amplitude periodic
oscillations to nearly
steady-state dynamics

B. Hornfeldt, Long-term
decline in numbers of
cyclic voles in

boreal Sweden: Analysis
and presentation of
hypotheses. Oikos

107, 376392 (2004).



Table 2. Empirical evidence for long ecological transients.

chemostat and
temperate
lakes (72)

of some species

Duration
Population(s) Observed pattern
Generations Years
Laboratory population Switch from a regime with an almost constant density 15 =15
of beetles to large-amplitude oscillations (70 weeks)
(Triboliumsppy@5)
Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 lto 5
shallow eutrophic lakes water state
in the Netherlands (46)
Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish-dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)
Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals): 10
the Caribbean (47, 48) 50 to 100 (macroalgae)
Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)
Dungeness crab Large-amplitude transient oscillations with further 10to 15 45
(Cancer magister) (53) relaxation to equilibrium
Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to 8 (zooplankton)
temperate lakes in
Germany (26)
Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05to 0.15

(3 to 8 weeks)

Laboratory microbial
communities (56)

Slow switch between alternative stable states

20 to 40 0.11t0 0.21
(6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)
Extinction debt Long-term extinction of populations. occurring 20 to 100 (or more) 110 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]
Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish): 40

in watersheds in western
North Carolina,
USA (49)

biodiversity patterns after restoration

40 (invertebrates)

Modeled spruce budworm
outbreaks in balsam
fir forests (2)

Budworm outbreaks driven by slow
changes in condition of fir foliage

5 (refoliation): 50
50+ (budworm)
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Biomass of forage fishes in
the eastern

Scotian Shelf ecosystem; a
low-density steady state
changes to a

dynamical regime with a
much higher average
density [blue line is the
estimated carrying
capacity; error bars are
SEM]

K. T. Frank, B. Petrie, J. A.
Fisher, W. C. Leggett,
Transient dynamics of an
altered large marine

ecosystem.
Nature 477, 86-89 (2011).



Table 2. Empirical evidence for long ecological transients.

Duration

Population(s) Observed pattern

Generations Years

Laboratory population Switch from a regime with an almost constant density 15 ~15
of beetles to large-amplitude oscillations (70 weeks)
(Tribolium spp.) (25)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 lto 5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish-dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)

Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 10
the Caribbean (47, 48) 50 to 100 (macroalgae)

Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)

Dungeness crab Large-amplitude transient oscillations with further 10to 15 45
(Cancer magister) (53) relaxation to equilibrium

Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to & (zooplankton)
temperate lakes in
Germany (26)

Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05to 0.15
chemostat and of some species (3 to 8 weeks)
temperate
lakes (72)

Laboratory microbial Slow switch between alternative stable states 20 to 40 0.11to 0.21
communities (56) (6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)

Extinction debt Long-term extinction of populations, occurring 20 to 100 (or more) 110 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]

Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish): 40
) ) i i ) N
North Carolina,

USA (49)
Modeled spruce budworm Budworm outbreaks driven by slow 5 (refoliation); 50

outbreaks in balsam
fir forests (2)

changes in condition of fir foliage

50+ (budworm)
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Spruce budworm [dots] has a
much faster generation time than
its host tree, resulting in
extended periods of low
budworm density interrupted by
outbreaks.

Data from NERC Centre for
Population Biology, Imperial
College, Global Population
Dynamics Database (1999)

Model [blue] from D. Ludwig, D.
D. Jones, C. S. Holling, Qualitative
analysisof insect outbreak
systems: The spruce budworm
and forest. J. Anim. Ecol. 47, 315—-
332 (1978).



Simple models can show transitions
in the absence of external changes

—

Population density

o
&)

Mo

o

—

o

|

I8

o

m

Time

60

80

100

Model showing apparently
sustainable chaotic oscillation
suddenly results in species
extinction.

S. J. Schreiber, Allee effects,
extinctions, and chaotic
transients in simple population
models. Theor. Popul. Biol. 64,
201-209 (2003).



Simple models can show transitions
in the absence of external changes
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Model showing large-
amplitude periodic oscillations
that persist over hundreds of
generations suddenly
transition to oscillations with a
much smaller amplitude and a
verydifferent mean

A.Y. Morozov, M. Banerjee, S.
V. Petrovskii, Long-term
transients and complex
dynamics of a stage-structured
population with time delay
and the Allee effect. J. Theor.
Biol.

396, 116—-124 (2016).



Dynamical systems ideas can help
to ‘classity’ transients

e Ghost attractor



Illustration of ghost attractor in 2
species competition model
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Illustration of ghost attractor in 2
species competition model
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Illustration of ghost attractor in 2
species competition model
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Illustration of ghost attractor in 2
species competition model
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Illustration of ghost attractor in 2
species competition model
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Consumer density

Illustration of ghost attractor in 3
species food chain
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Consumer density
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Consumer density

Illustration of ghost attractor in 3

species food chain
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Dynamical systems ideas can help
to ‘classity’ transients

e Ghost attractor
e Crawl-bys



Predator-Prey dynamics

e dH/dt = rH(1-H) — f(H)P
e dP/dt = cf(H)—P
e |llustrate with phase planes
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No transients for
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dynamic as
illustrated in a
phase plane
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Dynamical systems ideas can help
to ‘classity’ transients

e Ghost attractor
e Crawl-bys
e Slow-fast dynamics
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We have already seen high
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Fig. 1. Dynamics of a spatially structured model (1-3) of a population with pelagic larvae along a
coastline as a function of the growth rate r. In all cases, the initial conditions were chosen randomily
in space from a uniform distribution, and £ = B00. The presence of long transients is apparent from
the plots for all values of r = 3.25.
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Type of LT

Relationship to
invariant set

Relationship to

bifurcation

Dynamics mimicked
by LT

Possibility of
recurrent LTs?

Biological
example

Ghost (Fig. 2)

Crawlby

(Fig. 3,C
LN

Slow-fast systems

No invariant set

Causedby

saddle-type

invariant set

None necessary

(g3, EandF) .

.I'-Iigh dimension

(e.g., time delays,

None necessary

..5pace) (Fig. 4A) .

Stochasticity
(Fig. 4B)

Occurs past a
bifurcation
where stable
equilibrium
is lost

Mu|t|p|et|me5(;a|e5

None necessary

None necessary

Equilibrium, cycles,
chaos

Equilibrium, cycles,

chaos

Periodic or
aperiodic cycles

'I.-Z.E|ui.libriu.ml. cyclés.

chaos

No

Cag—

G
set(s) present

Yes

Forage fish (27)
(Fig. 3B)

Phytoplankton-grazer

models (26)

Univoltine insects (2)

. F18.3C)
Chemostat microbial
communities (57)

If invari

If invariant set absent:

P
where cycles/chaos

are lost

Quasi-periodic cycles

Yes

Cancer crabs (53)



Table 2. Empirical evidence for long ecological transients.

Duration

Population(s) Observed pattern

Generations Years

Laboratory population Switch from a regime with an almost constant density 15 ~15
of beetles to large-amplitude oscillations (70 weeks)
(Tribolium spp.) (25)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to 5 1to5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5to8 20
large-bodied state to a benthic fish-dominated state
benthic fishes
on the Scotian Shelf
of Canada’s
east coast (27)

Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 10
the Caribbean (47, 48) 50 to 100 (macroalgae)

Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)

Dungeness crab Large-amplitude transient oscillations with further 10to 15 45
(Cancer magister) (53) relaxation to equilibrium

Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to & (zooplankton)
temperate lakes in
Germany (26)

Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05to 0.15
chemostat and of some species (3 to 8 weeks)
temperate
lakes (72)

Laboratory microbial Slow switch between alternative stable states 20 to 40 0.11to 0.21
communities (56) (6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)

Extinction debt Long-term extinction of populations, occurring 20 to 100 (or more) 110 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]

Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish): 40
in watersheds in western biodiversity patterns after restoration 40 (invertebrates)

North Carolina,
USA (49)
Modeled spruce budworm Budworm outbreaks driven by slow 5 (refoliation): 50

outbreaks in balsam
fir forests (2)

changes in condition of fir foliage

50+ (budworm)



Cannot overemphasize how
important this is for management



Ecosystems can have multiple
stable states




Ecosystems can have multiple
stable states




An example: coral reefs and
grazing

 Demonstrate the role of hysteresis in coral reefs by
extending an analytic model (Mumby et al. 2007%*)
to explicitly account for parrotfish dynamics
(including mortality due to fishing)

 |dentify when and how phase shifts to degraded
macroalgal states can be prevented or reversed

* Provide guidance to management decisions regarding
fishing regulations

e Provide ways to assign value to parrotfish



Grazm a ke driver for corals

Use mean field model




Grazing




Outome depends on grazing intensity —
hysterisis

m Coral cover versus
\ grazinghintensity
os|- N\ — using the original
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m Solid lines are stable
equilibria, dashed
lines are unstable
\ ® Arrows denote the
hysteresis loop
resulting from
changes in grazing
intensity
® The region labeled
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Simple analytic model

Overgrowth
dM g(P)M
—_— : j‘[fc — I ’-"-".PI'IT
dt - M+T
% = 1 C —dC —aMC Overgrowth
d P P
— = sP|1 — fP
dt i ( ﬁ:{@j) !

e Blackwood, Hastings, Mumby, Ecol Appl 2011; Theor Ecol 2012



e But parrotfish
are subject to
fishing
pressure, so
need to
include the
effects of
fishing and
parrotfish
dynamics,
and only
Cﬁntrql 1S
changing
fishing




Coral recovery via the elimination of fishing
effort

Start with

macroalgae
at long term
equilibrium

Caralcover

0.8 1
Grazing Intensity

A

® Points in the colored region are points that can be
controlled to a coral-dominated state and the points
outside of the region are the ending location after 5
years with no fishing mortality




Recovery time scale depends on fishing
effort level and is not monotonic

a b.




Recovery time scale depends on fishing
effort level and is not monotonic

a b.
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Conclusions

e Transient dynamics are key for answering important
ecological questions on relevant timescales

* Transient dynamics are important for management

 Many ecological systems definitely exhibit transient
dynamics

e Distinguishing transient dynamics from asymptotic
behavior is a challenge

e Concepts from dynamical systems provide a way to
classify and understand transients (why and when)

e Further challenges from non-autonomous systems

* Tipping points are a phenomenon that is associated
with transients



Mathematical challenges

* Dynamical systems with realistic stochasticity on
realistic time scales and possible nonautonomous
aspects
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