Transient Dynamics in Ecology

Alan Hastings Department of Environmental Science and Policy UC Davis Santa Fe Institute

Understanding time scales is key for many socio-ecological problems

A typology of time-scale mismatches and behavioral interventions to diagnose and solve conservation problems

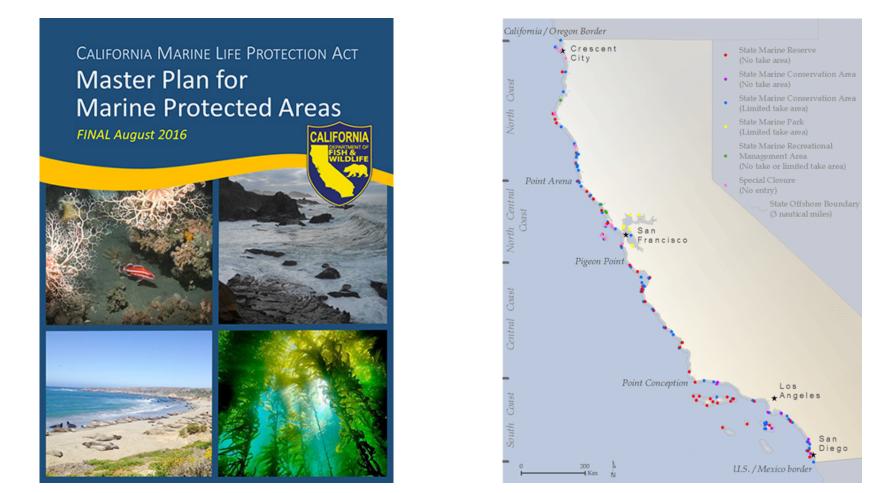
Robyn S. Wilson,*¶ David J. Hardisty,† Rebecca S. Epanchin-Niell,‡ Michael C. Runge,§ Kathryn L. Cottingham,** Dean L. Urban,†† Lynn A. Maguire,†† Alan Hastings,‡‡ Peter J. Mumby,§§ and Debra P.C. Peters***

42

Conservation Biology, Volume 30, No. 1, 42-49 © 2015 Society for Conservation Biology DOI: 10.1111/cobi.12632

Identify the problem

- Time scales of social systems
- Time scales of ecological systems hard to change
- Time scales for decision makers

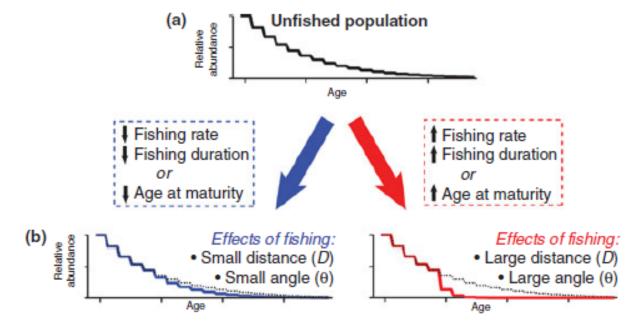

Time scale of ecological response?

- Marine protected areas have been implemented in California (and around the world)
- Can we say that they are working?

Transient responses of fished populations to marine reserve establishment

J. Wilson White¹, Louis W. Botsford², Alan Hastings³, Marissa L. Baskett³, David M. Kaplan⁴, & Lewis A.K. Barnett³

Conservation Letters 6 (2013) 180–191 Copyright and Photocopying: (©2012 Wiley Periodicals, Inc.


Problem setup is simple

 Approximate the nonlinear (density dependent) dynamics by a linear model

 $\mathbf{N}_{t+1} = \mathbf{A}\mathbf{N}_{t}$ $\mathbf{B} = \lim_{t \to \infty} \frac{\mathbf{A}^{t}}{\lambda_{1}^{t}} = \frac{\mathbf{W}_{1}\mathbf{V}_{1}'}{\mathbf{V}_{1}\mathbf{W}_{1}'}$ $\lim_{t \to \infty} \mathbf{A}_{0}^{t}\mathbf{N}_{0} \propto \mathbf{B}\mathbf{N}_{0} \propto \mathbf{W}_{1}$

Important to develop general principles of response

 Time scale of response depends on state of perturbed (fished) system; starting point is how far the system is from a stable age distribution

Approach now being used to develop monitoring plan for MLPA marine reserves – challenges of data-model interface

- Kaplan et al Ecological Applications in press
- Yamane et al submitted
- Using models to explain response over realistic time scales using age structure and estimates of fishing pressure

Even 'linear' transients are important, but of course more complex with density dependence

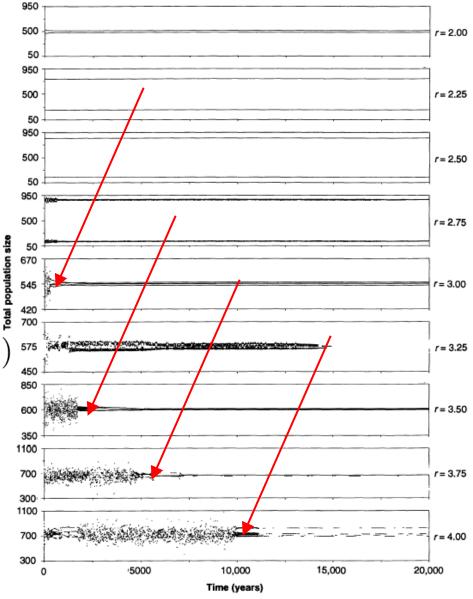
Persistence of Transients in Spatially Structured Ecological Models

Alan Hastings* and Kevin Higgins

SCIENCE • VOL. 263 • 25 FEBRUARY 1994

Movement of larvae by dispersal, finite habitat

$$N(t+1,x) = \int_0^L l(t,y)g(y,x)dy$$

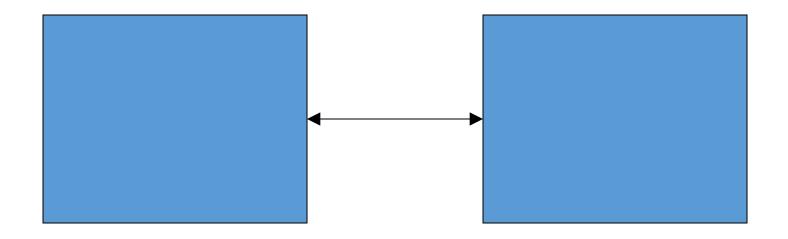

Local production of larvae

$$l(t, y) = N(t, x) \exp(r(1 - N(t, x)))$$

Dispersal kernel

$$g(y,x) = \frac{\exp(-D(y-x)^2)}{\sqrt{\pi/D}}$$

D = 800


Fig. 1. Dynamics of a spatially structured model (1-3) of a population with pelagic larvae along a coastline as a function of the growth rate *r*. In all cases, the initial conditions were chosen randomly in space from a uniform distribution, and D = 800. The presence of long transients is apparent from the plots for all values of $r \ge 3.25$.

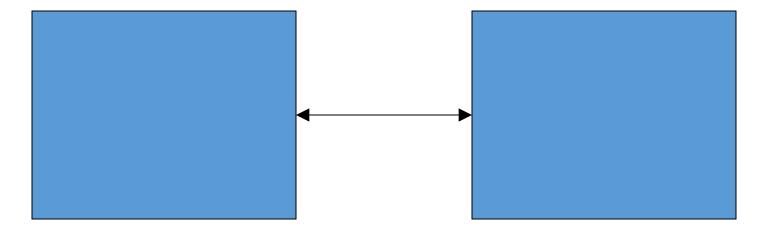
Two patches, single species Hastings, 1993, Gyllenberg et al 1993

 $\tilde{x}_i(t) = f[r_i, x_i(t)],$

f(r, x) = rx(1 - x),

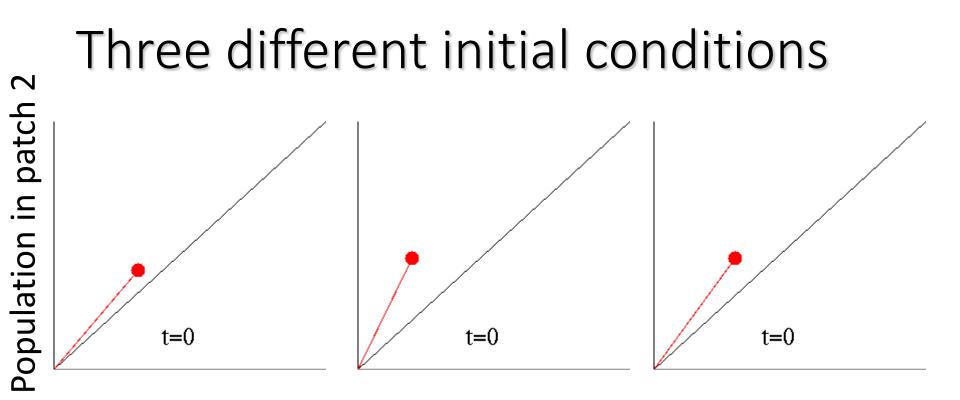
Alternate growth

Two patches, single species Hastings, 1993, Gyllenberg et al 1993


 $\tilde{x}_i(t) = f[r_i, x_i(t)],$

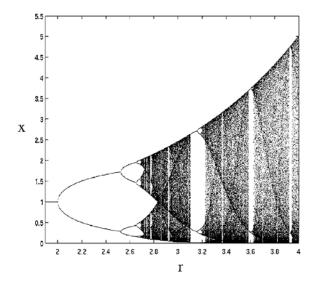
f(r, x) = rx(1 - x),

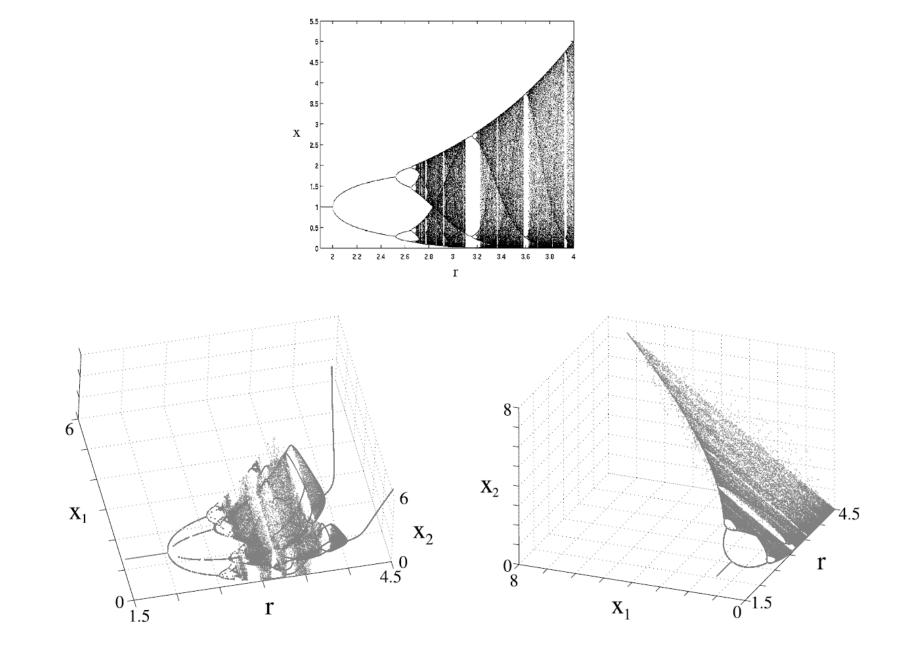
Alternate growth


$$\begin{aligned} x_1(t+1) &= \hat{x}_1(t) + D[\hat{x}_2(t) - \hat{x}_1(t)] \\ x_2(t+1) &= \hat{x}_2(t) + D[\hat{x}_1(t) - \hat{x}_2(t)], \end{aligned}$$

And then dispersal

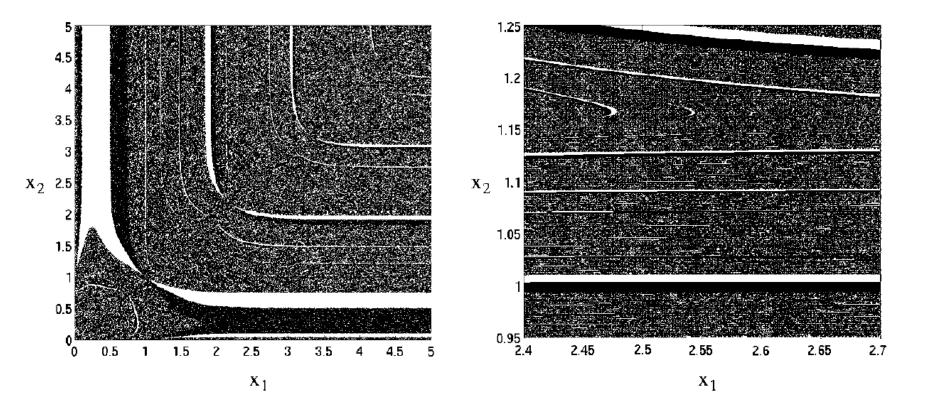
But what do the dynamics look like on ecologically realistic time scales?

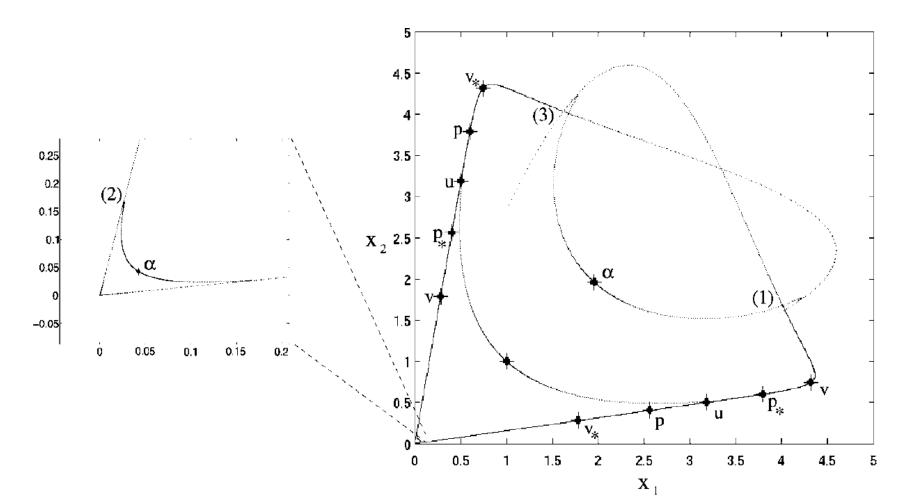

- Choose r=3.8, D=0.15
- Follow population sizes through time for different choices of initial conditions
- Red dot is current population levels, line comes from the previous population levels

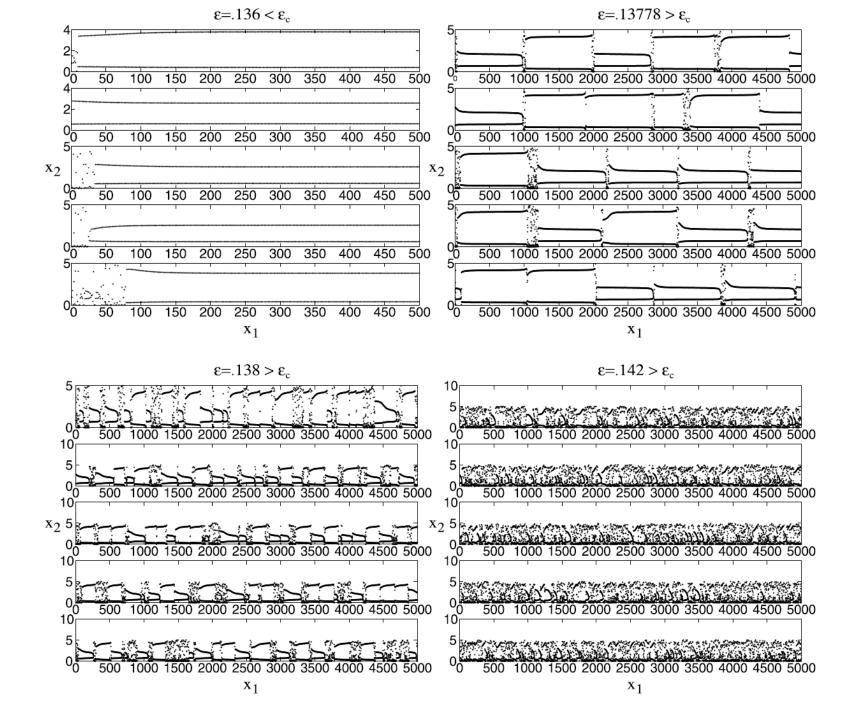


Population in patch 1

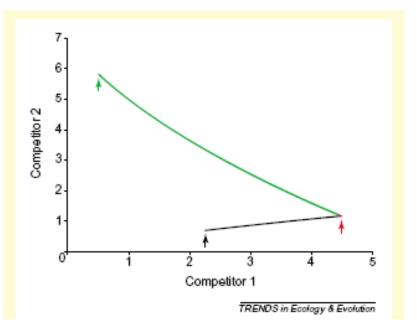
 Two ends of the line represent population in two patches in two successive years; note change between in phase (synchronous, along 45 degree line) and out of phase (across 45 degree line) Analytic treatment of transients in coupled patches (Wysham & Hastings, BMB, 2008; H and W, Ecol Letters 2010;) helps to determine when, and how common


- Depends on understanding of crises
 - Occurs when an attractor 'collides' with another solution as a parameter is changed
 - Typically produces transients
 - Can look at how transient length scales with parameter values
- Start with 2 patches and Ricker local dynamics



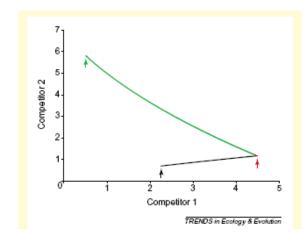

Strong coupling

Entangled basins of attraction


Period 2 orbits, fixed points, and unstable manifolds: multiple heteroclinic connections and one heteroclinic tangle

As a start to understanding --Saddles are a first simple way to approach transients

- Start with simplest example
 - Lotka-Volterra competition
 - Saddle is an equilibrium


Transients: the key to long-term ecological understanding?

TRENDS in Ecology and Evolution Vol. 19 No.1 January 2004

Alan Hastings

As a start to understanding --Saddles are a first simple way to approach transients

- Start with simplest example
 - Lotka-Volterra competition
 - Saddle is an equilibrium
- Start at analytic understanding
- Laboratory example
 - Tribolium
 - Saddle is a 2-cycle
- Complex non-spatial model (plankton)

Transient can be important for coexistence

Available online at www.sciencedirect.com

Theoretical Population Biology 64 (2003) 431-438

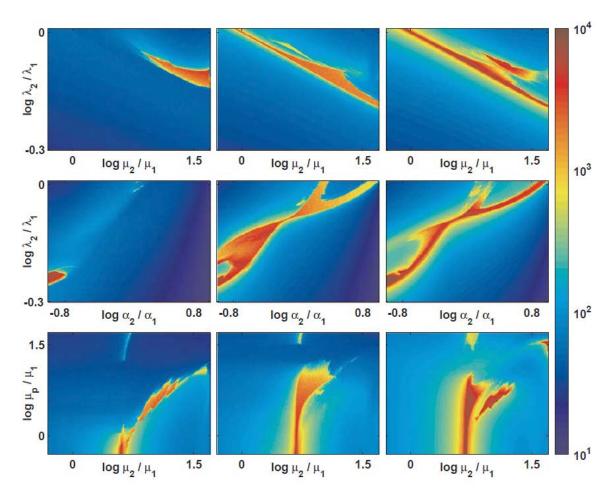
Theoretical Population Biology

http://www.elsevier.com/locate/ytpbi

Spatial mechanisms for coexistence of species sharing a common natural enemy

Aaron A. King^{a,*} and Alan Hastings^b

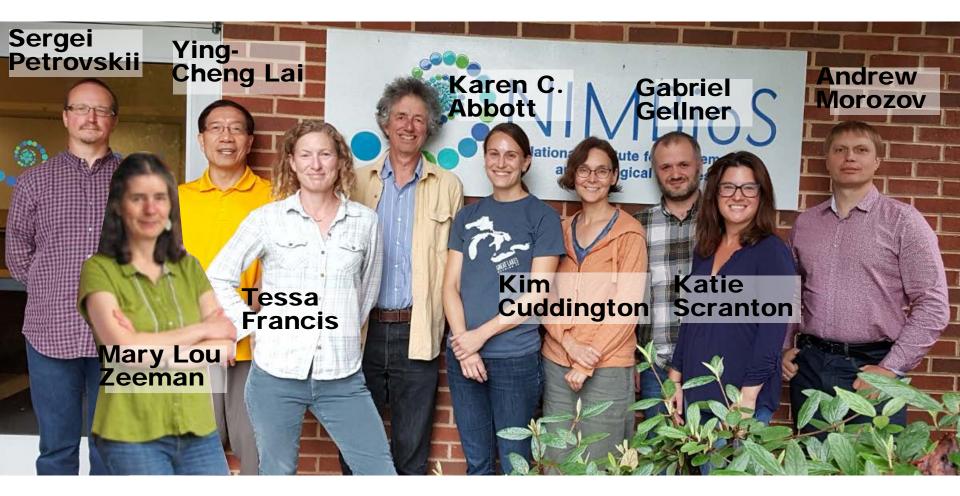
Instrinsic growth rate


$$n_{j}^{i}(t+1) = \lambda_{i} N_{j}^{i}(t) f_{i}(P_{j}(t)),$$

$$p_{j}(t+1) = \sum_{i} c_{i} N_{j}^{i}(t) (1 - f_{i}(P_{j}(t))),$$

$$f_i(P) = \exp(-\alpha_i P).$$

Probability the host is not parasitized – 0 term in the Poisson distribution


$$N_{j}^{i}(t) = (1 - \mu_{i}) n_{j}^{i}(t) + \frac{\mu_{i}}{M} \sum_{k} n_{k}^{i}(t),$$
$$P_{j}(t) = (1 - \mu_{p}) p_{j}(t) + \frac{\mu_{p}}{M} \sum_{k} p_{k}(t),$$

Random movement

 Mean transient coexistence duration. Each row depicts a distinct slice through the sixdimensional parameter space.

Can we make this more systematic?

Transient phenomena in ecology

Alan Hastings¹*, Karen C. Abbott², Kim Cuddington³, Tessa Francis⁴, Gabriel Gellner⁵, Ying-Cheng Lai⁶, Andrew Morozov^{7,8}, Sergei Petrovskii⁷, Katherine Scranton⁹, Mary Lou Zeeman¹⁰

The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.

Long transients in ecology: theory and applications

Andrew Morozov Mathematics, Univ. of Leicester, UK

Karen Abbott Biology, Case Western Reserve University

Kim Cuddington Biology, University of Waterloo, Canada

Tessa Francis Tacoma Puget Sound Institute, Univ. of Washington

Gabriel Gellner Integrative Biology, University of Guelph, Canada

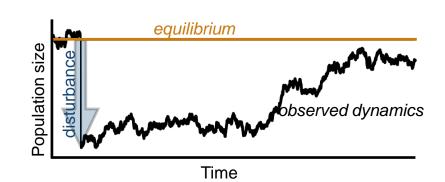
Alan Hastings Environmental Science and Policy, Univ. of California, Davis

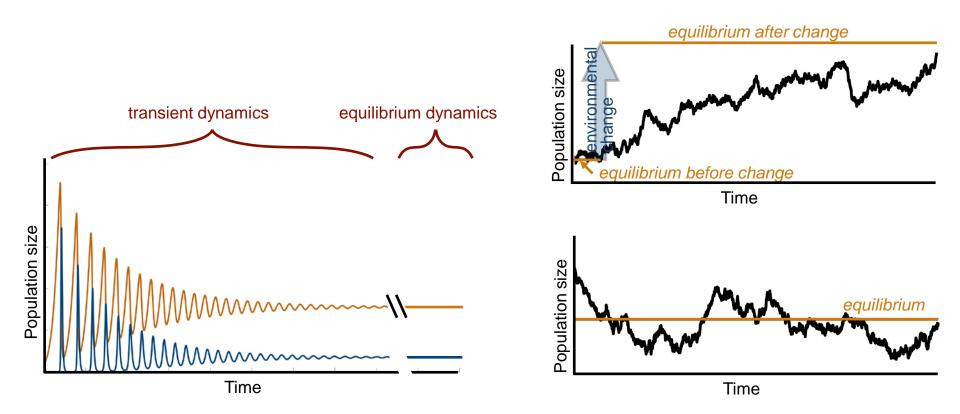
Ying-Cheng Lai Electrical, Computer and Energy Engineering, ASU, Tempe

> Sergei Petrovskii^{*} Mathematics, Univ. of Leicester, UK

Katherine Scranton Department of Ecology and Evolutionary Biology, Yale U.

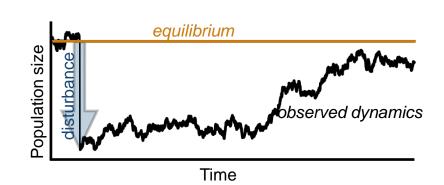
> Mary Lou Zeeman Mathematics, Bowdoin College, Brunswick

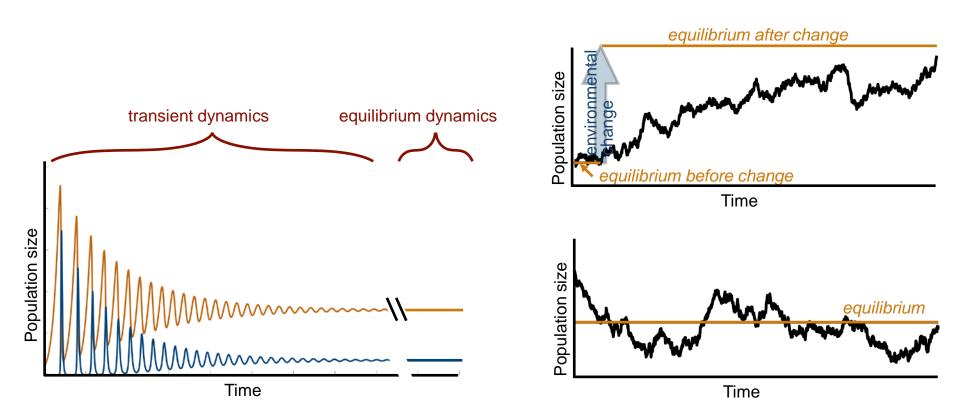

More of the mathematical details are in this manuscript in press in Physics of Life Reviews


Use ideas from dynamical systems to classify long transients

• Show when they will arise

What do we mean by "long transients"?


- Transient: dynamics that occur when a system is not at equilibrium
 - Equilibrium: an asymptotic state (point, limit cycle, chaos); a system at this state will stay there indefinitely unless perturbed
- Long transient: a transient that lasts "longer than you'd think"
 - roughly, dozens of generations or more
 - · long enough that it really looks like a stable equilibrium



What do we mean by "long transients"?

- Transient: dynamics that occur when a system is not at equilibrium
 - Equilibrium: an asymptotic state (point, limit cycle, chaos); a system at this state will stay there indefinitely unless perturbed
- Long transient: a transient that lasts "longer than you'd think"
 - roughly, dozens of generations or more
 - · long enough that it really looks like asymptotic behavior

More empirical examples

Table 2. Empirical evidence for long ecological transients.

Population(s)	Observed pattern	Duration	
		Generations	Years
Laboratory population of beetles (<i>Tribolium</i> spp.) (25)	Switch from a regime with an almost constant density to large-amplitude oscillations	15	~1.5 (70 weeks)
Growth of macrophytes in shallow eutrophic lakes in the Netherlands (46)	Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5
Population of large-bodied benthic fishes on the Scotian Shelf of Canada's east coast (27)	Switch from a forage fish (and macroinvertebrate)–dominated state to a benthic fish–dominated state	5 to 8	20
Coral and microalgae in the Caribbean (47, 48)	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals); 50 to 100 (macroalgae)	10
Voles, grouse in Europe (59)	Switch between cyclic and noncyclic regimes, or between cyclic regimes with different periodicity	60 (voles); 20 to 30 (lemmings); 5 (grouse)	~30
Dungeness crab (Cancer magister) (53)	Large-amplitude transient oscillations with further relaxation to equilibrium	10 to 15	45
Zooplankton-algal interactions in temperate lakes in Germany (26)	Variation of amplitude and period of predator-prey oscillations across the season	80 to 100 (algae); 5 to 8 (zooplankton)	1
Planktonic species in chemostat and temperate lakes (72)	Long-term variation of species densities, with extinction of some species	40 to 100	~0.05 to 0.15 (3 to 8 weeks)
Laboratory microbial communities (56)	Slow switch between alternative stable states	20 to 40	0.11 to 0.21 (6 to 12 weeks)
Grass community in abandoned agricultural fields in the Netherlands (57)	Long-term existence of a large number of alternative transient states	10	9
Extinction debt phenomena as a consequence of habitat loss [plants, birds, fish, lichens, and others (60)]	Long-term extinction of populations, occurring either steadily or via oscillations	20 to 100 (or more)	1 to 100
Fish and invertebrates in watersheds in western North Carolina, USA (49)	Influence of past habitat structure on present biodiversity patterns after restoration	10 to 20 (fish); 40 (invertebrates)	40
Modeled spruce budworm outbreaks in balsam fir forests (2)	Budworm outbreaks driven by slow changes in condition of fir foliage	5 (refoliation); 50+ (budworm)	50

Developing		Duration	
Population(s)	Observed pattern	Generations	Years
Laboratory population	Switch from a regime with an almost constant density	15	~1.5
of beetles	to large-amplitude oscillations		(70 weeks)
(Tribolium spp.) (25)			
Growth of macrophytes in	Switch from a macrophyte-dominated state to a turbid	1 to 5	1 to 5
shallow eutrophic lakes	water state		
in the Netherlands (46)			
Population of	Switch from a forage fish (and macroinvertebrate)-dominated	5 to 8	20
large-bodied	state to a benthic fish-dominated state		
benthic fishes			
on the Scotian Shelf			
of Canada's			
east coast (27)			
Coral and microalgae in	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals);	10
the Caribbean (47, 48)		50 to 100 (macroalgae)	
Voles, grouse in	Switch between cyclic and noncyclic regimes, or between	60 (voles); 20 to 30	~30
Europe (59)	cyclic regimes with different periodicity	(lemmings); 5 (grouse)	
Dungeness crab	Large-amplitude transient oscillations with further	10 to 15	45
(Cancer magister) (53)	relaxation to equilibrium		
Zooplankton-algal	Variation of amplitude and period of predator-prey	80 to 100 (algae);	1
interactions in	oscillations across the season	5 to 8 (zooplankton)	
temperate lakes in			
Germany (26)			
Planktonic species in	Long-term variation of species densities, with extinction	40 to 100	~0.05 to 0.15
chemostat and	of some species		(3 to 8 weeks)
temperate			
lakes (72)			
Laboratory microbial	Slow switch between alternative stable states	20 to 40	0.11 to 0.21
communities (56)			(6 to 12 weeks)
Grass community	Long-term existence of a large number of alternative	10	9
in abandoned	transient states		
agricultural fields			
in the Netherlands (57)			
Extinction debt	Long-term extinction of populations, occurring	20 to 100 (or more)	1 to 100
phenomena as	either steadily or via oscillations		

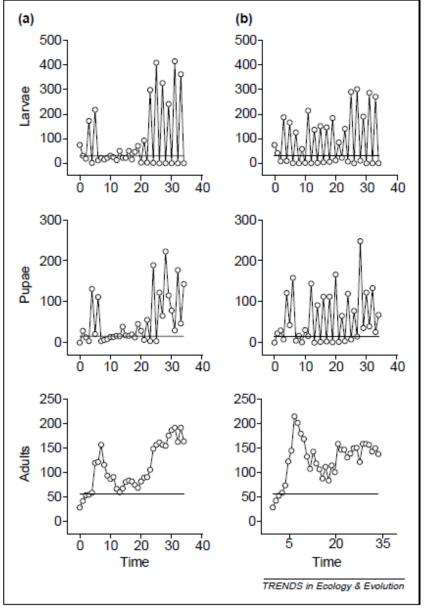
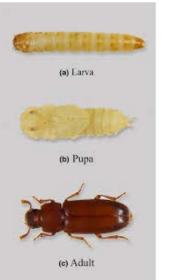



Figure 2. Transient dynamics are shown for a laboratory population of *Tribolium*, as reproduced with permission from [6]. For one replicate (a), the population numbers (of larvae, pupae and adults) go through a period of time of approximate constancy, and then the dynamics change so that a two-point cycle is observed. For the other replicate (b), no transient dynamics are observed. This demonstrates that, even in a simple laboratory system, transient dynamics can be observed and that different dynamics are observed on a different timescale.

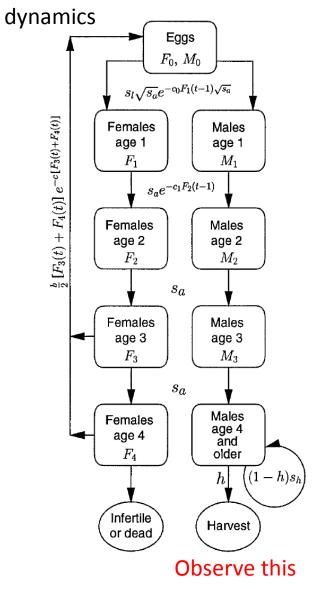
Transients in *Tribolium*

 Note the flip between relatively constant dynamics and cycles in the replicate on the left, and the cycles in the replicate on the right

Cushing et al. (1998)

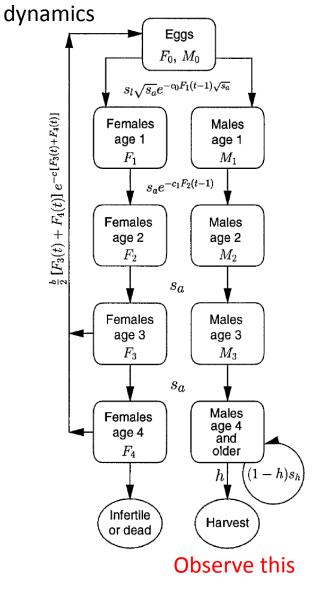
0 (,

		(70 weeks)
Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5
Switch from a forage fish (and macroinvertebrate)–dominated state to a benthic fish–dominated state	5 to 8	20
Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals); 50 to 100 (macroalgae)	10
Switch between cyclic and noncyclic regimes, or between	60 (voles); 20 to 30	~30
cyclic regimes with different periodicity	(iemnings), 5 (grouse)	AE
	10 10 10	45
	00 to 100 (cleas):	1
oscillations across the season	5 to 8 (zooplankton)	-
Long-term variation of species densities, with extinction of some species	40 to 100	~0.05 to 0.15 (3 to 8 weeks)
Slow switch between alternative stable states	20 to 40	0.11 to 0.21 (6 to 12 weeks)
Long-term existence of a large number of alternative transient states	10	9
Long-term extinction of populations, occurring either steadily or via oscillations	20 to 100 (or more)	1 to 100
	water state Switch from a forage fish (and macroinvertebrate)-dominated state to a benthic fish-dominated state Shifts from coral to macroalgal dominance on coral reefs Switch between cyclic and noncyclic regimes, or between cyclic regimes with different periodicity Large-amplitude transient oscillations with further relaxation to equilibrium Variation of amplitude and period of predator prey oscillations across the season Long-term variation of species densities, with extinction of some species Slow switch between alternative stable states Long-term existence of a large number of alternative transient states Long-term extinction of populations, occurring	water state Switch from a forage fish (and macroinvertebrate)-dominated state 5 to 8 Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 50 to 100 (macroalgae) Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 cyclic regimes with different periodicity (remmings), 5 (grouse) Large-amplitude transient oscillations with further 10 to 15 relaxation to equilibrium 90 to 100 (algae); Variation of amplitude and period of produtor prey 90 to 100 (algae); oscillations across the season 5 to 8 (zooplankton) Long-term variation of species densities, with extinction of some species 40 to 100 Slow switch between alternative stable states 20 to 40 Long-term existence of a large number of alternative transient states 10 Long-term extinction of populations, occurring 20 to 100 (or more)

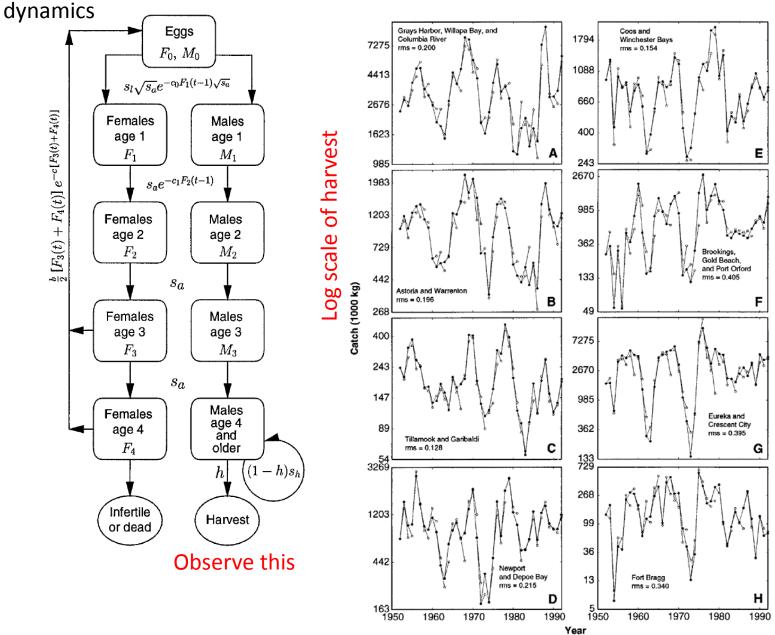

Stochastic Dynamics and Deterministic Skeletons: Population Behavior of Dungeness Crab

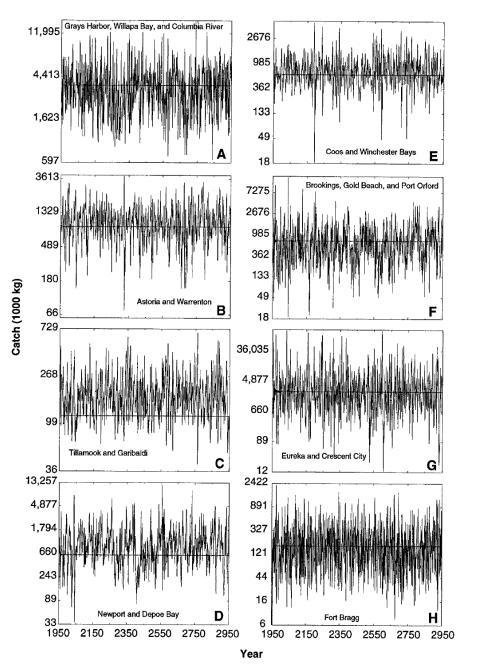
Kevin Higgins,* Alan Hastings, Jacob N. Sarvela, Louis W. Botsford

www.sciencemag.org • SCIENCE • VOL. 276 • 30 MAY 1997



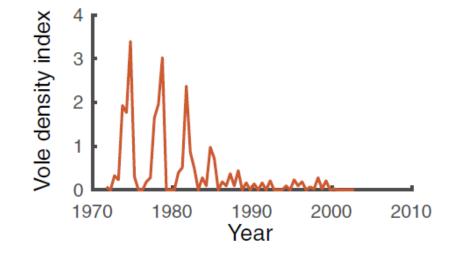
Detailed model of Dungeness crab


Detailed model of Dungeness crab


Observed harvests and one step ahead predictions

Detailed model of Dungeness crab

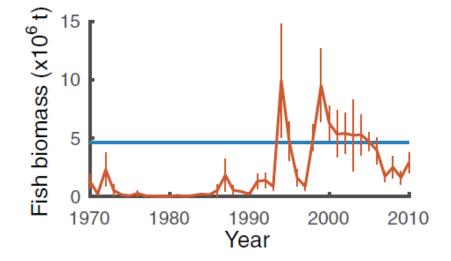
Observed harvests and one step ahead predictions



- Stochastic simulations over 1000 years; in all cases but one best fit parameters produce a stable equilibrium for deterministic skeleton
- Is right way to think of this as transients in response to stochastic perturbations?

Table 2. Empirical evidence for long ecological transients.

B. 111 (A)		Duration	
Population(s)	Observed pattern	Generations	Years
Laboratory population of beetles (<i>Tribolium</i> spp.) (25)	Switch from a regime with an almost constant density to large-amplitude oscillations	15	~1.5 (70 weeks)
Growth of macrophytes in shallow eutrophic lakes in the Netherlands (46)	Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5
Population of large-bodied benthic fishes on the Scotian Shelf of Canada's east coast (27)	Switch from a forage fish (and macroinvertebrate)–dominated state to a benthic fish–dominated state	5 to 8	20
Coral and microalgae in	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals);	10
the Caribbean (4/, 48) Voles, grouse in	Switch between cyclic and noncyclic regimes, or between	50 to 100 (macroalgae) 60 (voles); 20 to 30	~30
Europe (59) Dungeness crab	cyclic regimes with different periodicity Large-amplitude transient oscillations with further	(lemmings); 5 (grouse) 10 to 15	45
(Cancer magister) (30)		10 10 13	1 0
Zooplankton-algal interactions in temperate lakes in Germany (26)	Variation of amplitude and period of predator-prey oscillations across the season	80 to 100 (algae); 5 to 8 (zooplankton)	1
Planktonic species in chemostat and temperate lakes (72)	Long-term variation of species densities, with extinction of some species	40 to 100	~0.05 to 0.15 (3 to 8 weeks)
Laboratory microbial communities (56)	Slow switch between alternative stable states	20 to 40	0.11 to 0.21 (6 to 12 weeks
Grass community in abandoned agricultural fields in the Netherlands (57)	Long-term existence of a large number of alternative transient states	10	9
Extinction debt phenomena as a consequence of habitat loss [plants, birds, fish, lichens, and others (60)]	Long-term extinction of populations, occurring either steadily or via oscillations	20 to 100 (or more)	1 to 100
Fish and invertebrates in watersheds in western North Carolina, USA (49)	Influence of past habitat structure on present biodiversity patterns after restoration	10 to 20 (fish); 40 (invertebrates)	40
Modeled spruce budworm outbreaks in balsam fir forests (2)	Budworm outbreaks driven by slow changes in condition of fir foliage	5 (refoliation); 50+ (budworm)	50

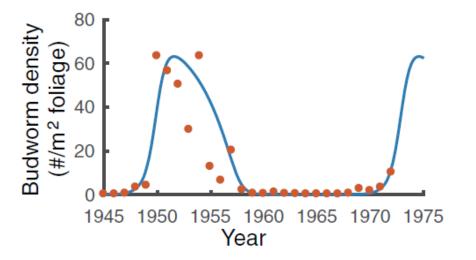


Population abundance of voles in northern Sweden, showing a transition from large-amplitude periodic oscillations to nearly steady-state dynamics

B. Hörnfeldt, Long-term decline in numbers of cyclic voles in boreal Sweden: Analysis and presentation of hypotheses. Oikos 107, 376–392 (2004).

Table 2. Empirical evidence for long ecological transients.

B		Duration	
Population(s)	Observed pattern	Generations	Years
Laboratory population of beetles (<i>Tribolium</i> spp.) (25)	Switch from a regime with an almost constant density to large-amplitude oscillations	15	~1.5 (70 weeks)
Growth of macrophytes in shallow eutrophic lakes in the Netherlands (46)	Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5
Population of large-bodied benthic fishes on the Scotian Shelf of Canada's east coast (27)	Switch from a forage fish (and macroinvertebrate)–dominated state to a benthic fish–dominated state	5 to 8	20
Coral and microalgae in	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals);	10
the Caribbean (47, 48)		50 to 100 (macroalgae)	
Voles, grouse in Europe (59)	Switch between cyclic and noncyclic regimes, or between cyclic regimes with different periodicity	60 (voles); 20 to 30 (lemmings); 5 (grouse)	~30
Dungeness crab (Cancer magister) (53)	Large-amplitude transient oscillations with further relaxation to equilibrium	10 to 15	45
Zooplankton-algal interactions in temperate lakes in Germany (26)	Variation of amplitude and period of predator-prey oscillations across the season	80 to 100 (algae); 5 to 8 (zooplankton)	1
Planktonic species in chemostat and temperate lakes (72)	Long-term variation of species densities, with extinction of some species	40 to 100	~0.05 to 0.15 (3 to 8 weeks)
Laboratory microbial communities (56)	Slow switch between alternative stable states	20 to 40	0.11 to 0.21 (6 to 12 weeks)
Grass community in abandoned agricultural fields in the Netherlands (57)	Long-term existence of a large number of alternative transient states	10	9
Extinction debt phenomena as a consequence of habitat loss [plants, birds, fish, lichens, and others (60)]	Long-term extinction of populations, occurring either steadily or via oscillations	20 to 100 (or more)	1 to 100
Fish and invertebrates in watersheds in western North Carolina, USA (49)	Influence of past habitat structure on present biodiversity patterns after restoration	10 to 20 (fish); 40 (invertebrates)	40
Modeled spruce budworm outbreaks in balsam fir forests (2)	Budworm outbreaks driven by slow changes in condition of fir foliage	5 (refoliation); 50+ (budworm)	50

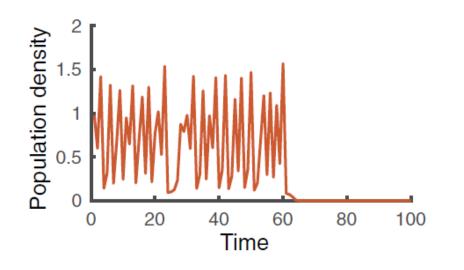


Biomass of forage fishes in the eastern Scotian Shelf ecosystem; a low-density steady state changes to a dynamical regime with a much higher average density [blue line is the estimated carrying capacity; error bars are SEM]

K. T. Frank, B. Petrie, J. A. Fisher, W. C. Leggett, Transient dynamics of an altered large marine ecosystem. Nature 477, 86–89 (2011).

Table 2. Empirical evidence for long ecological transients.

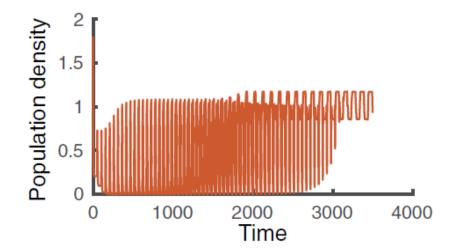
		Duration		
Population(s)	Observed pattern	Generations	nerations Years	
Laboratory population of beetles (<i>Tribolium</i> spp.) (25)	Switch from a regime with an almost constant density to large-amplitude oscillations	15	~1.5 (70 weeks)	
Growth of macrophytes in shallow eutrophic lakes in the Netherlands (46)	Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5	
Population of	Switch from a forage fish (and macroinvertebrate)-dominated	5 to 8	20	
large-bodied	state to a benthic fish-dominated state	5100	20	
benthic fishes	state to a benthic hish dominated state			
on the Scotian Shelf				
of Canada's				
east coast (27)		20.1. 25.(10	
Coral and microalgae in	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals);	10	
the Caribbean (47, 48)		50 to 100 (macroalgae)		
Voles, grouse in	Switch between cyclic and noncyclic regimes, or between	60 (voles); 20 to 30	~30	
Europe (59)	cyclic regimes with different periodicity	(lemmings); 5 (grouse)		
Dungeness crab	Large-amplitude transient oscillations with further	10 to 15	45	
(Cancer magister) (53)	relaxation to equilibrium			
Zooplankton-algal	Variation of amplitude and period of predator-prey	80 to 100 (algae);	1	
interactions in	oscillations across the season	5 to 8 (zooplankton)		
temperate lakes in				
Germany (26)				
Planktonic species in	Long-term variation of species densities, with extinction	40 to 100	~0.05 to 0.15	
chemostat and	of some species		(3 to 8 weeks)	
temperate				
lakes (72)				
Laboratory microbial	Slow switch between alternative stable states	20 to 40	0.11 to 0.21	
communities (56)			(6 to 12 weeks)	
Grass community	Long-term existence of a large number of alternative	10	9	
in abandoned	transient states			
agricultural fields				
in the Netherlands (57)				
Extinction debt	Long-term extinction of populations, occurring	20 to 100 (or more)	1 to 100	
phenomena as	either steadily or via oscillations			
a consequence				
of habitat loss				
[plants, birds, fish,				
lichens, and others (60)]				
Fish and invertebrates	Influence of past habitat structure on present	10 to 20 (fish):	40	
Torrand Invertebrates	inductor of past habitat strategies of present			
North Carolina,				
USA (49)				
Modeled spruce budworm	Budworm outbreaks driven by slow	5 (refoliation);	50	
outbreaks in balsam	changes in condition of fir foliage	50+ (budworm)		
fir forests (2)	and Boa in condition of in roughe	oo (oodworni)		



Spruce budworm [dots] has a much faster generation time than its host tree, resulting in extended periods of low budworm density interrupted by outbreaks.

Data from NERC Centre for Population Biology, Imperial College, Global Population Dynamics Database (1999)

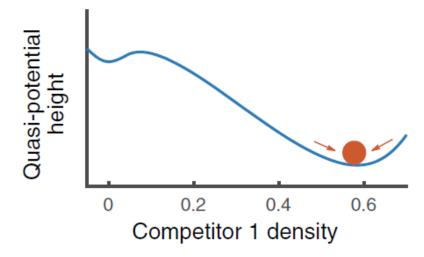
Model [blue] from D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysisof insect outbreak systems: The spruce budworm and forest. J. Anim. Ecol. 47, 315– 332 (1978).

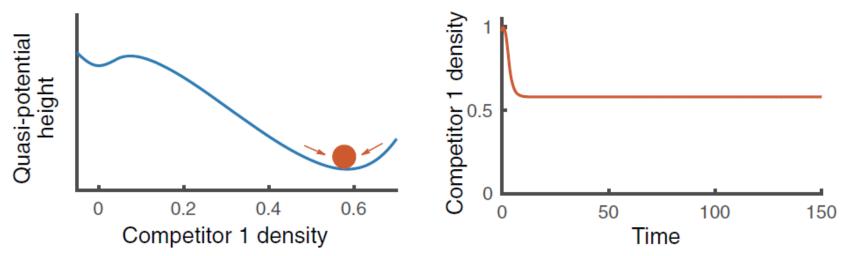

Simple models can show transitions in the absence of external changes

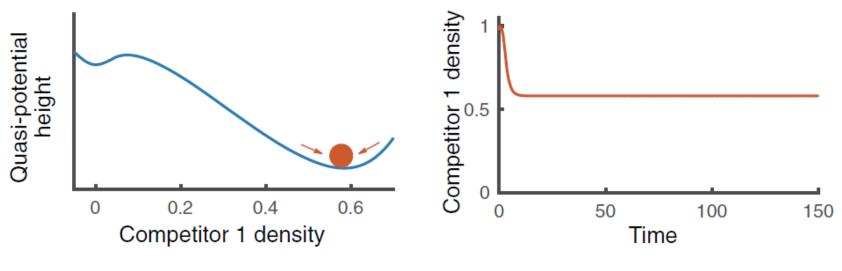
Model showing apparently sustainable chaotic oscillation suddenly results in species extinction.

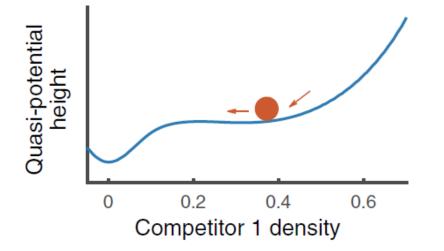
S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models. Theor. Popul. Biol. 64, 201–209 (2003).

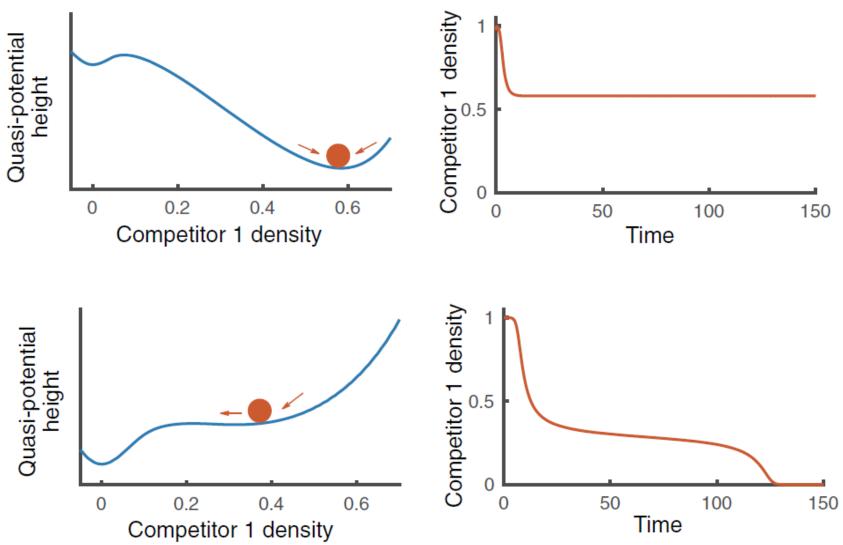
Simple models can show transitions in the absence of external changes

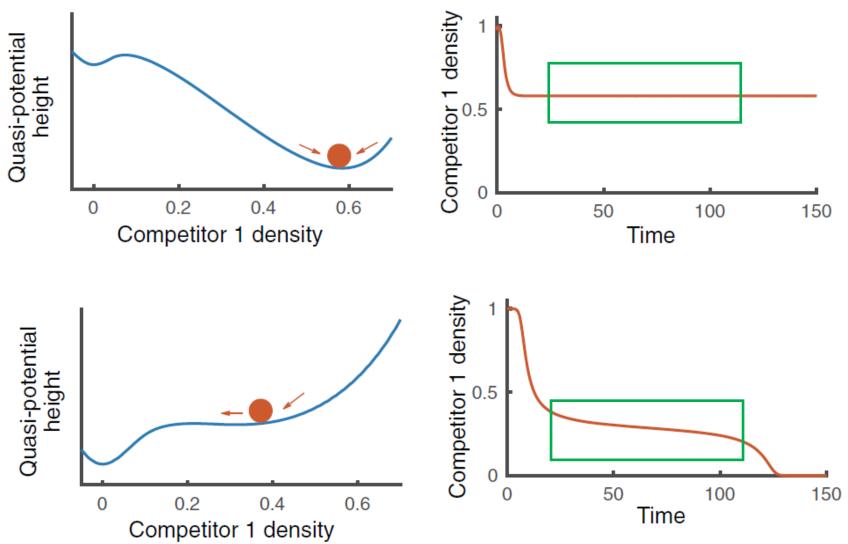

Model showing largeamplitude periodic oscillations that persist over hundreds of generations suddenly transition to oscillations with a much smaller amplitude and a verydifferent mean

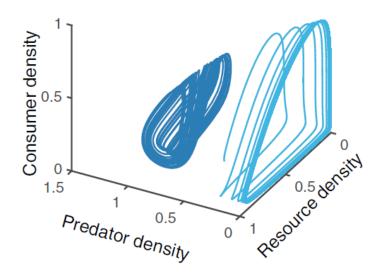

A. Y. Morozov, M. Banerjee, S.
V. Petrovskii, Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect. J. Theor.
Biol.

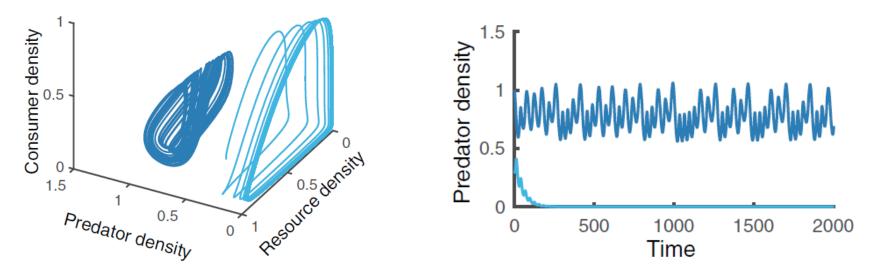

396, 116–124 (2016).

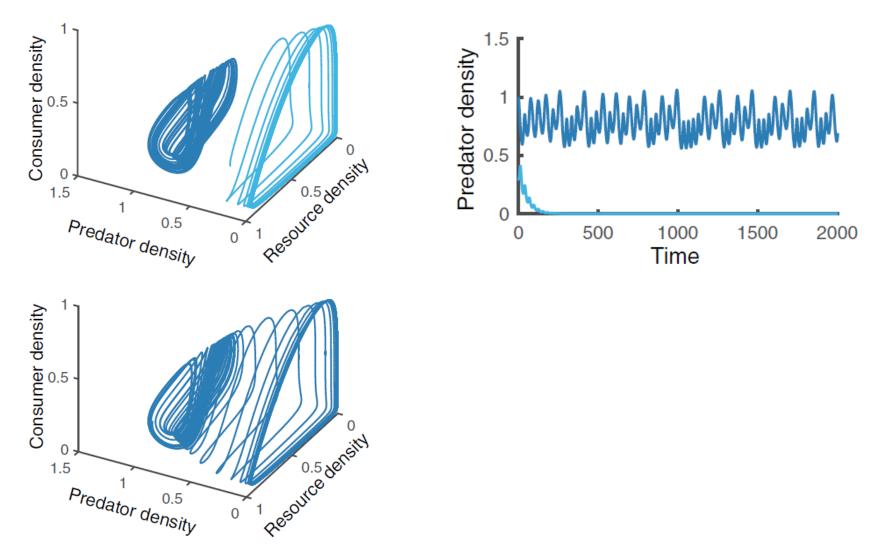

Dynamical systems ideas can help to 'classify' transients

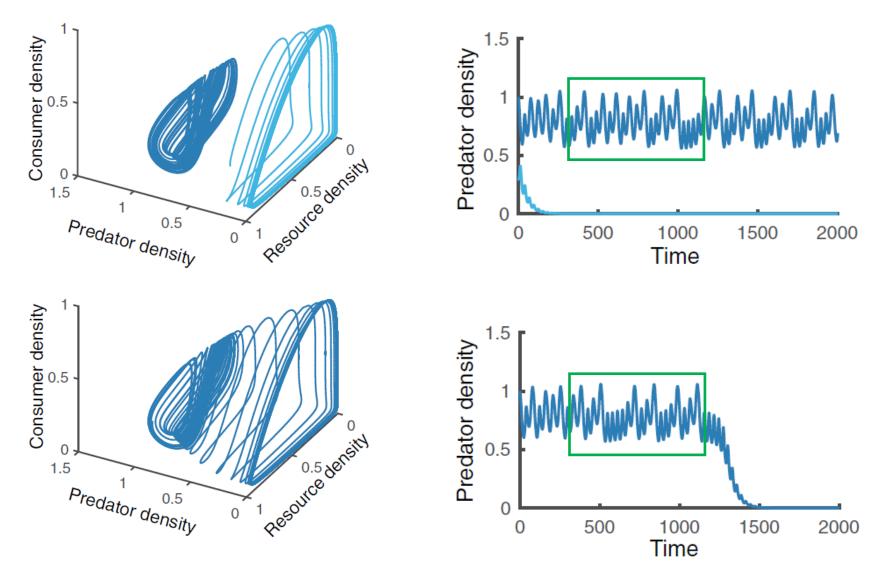

Ghost attractor

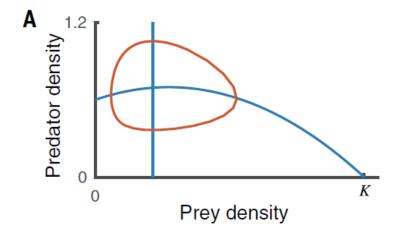




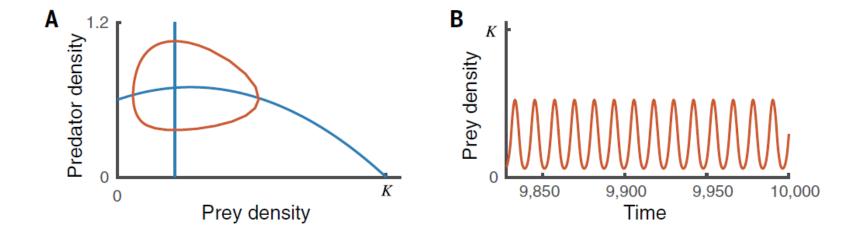


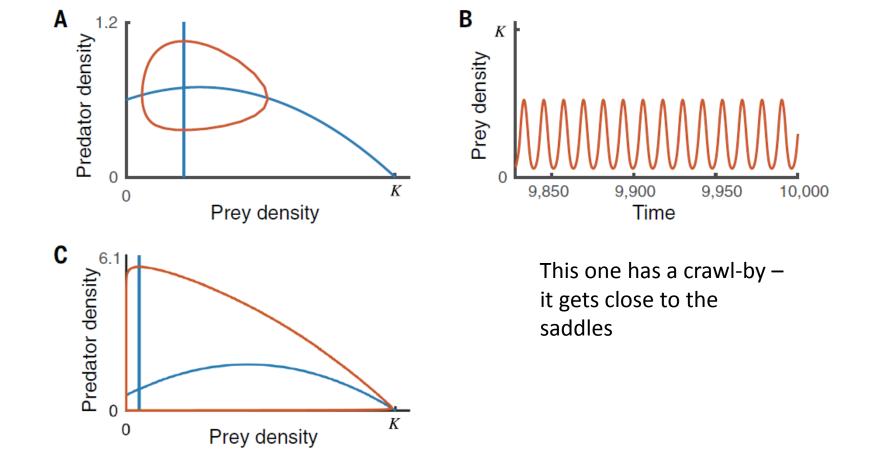


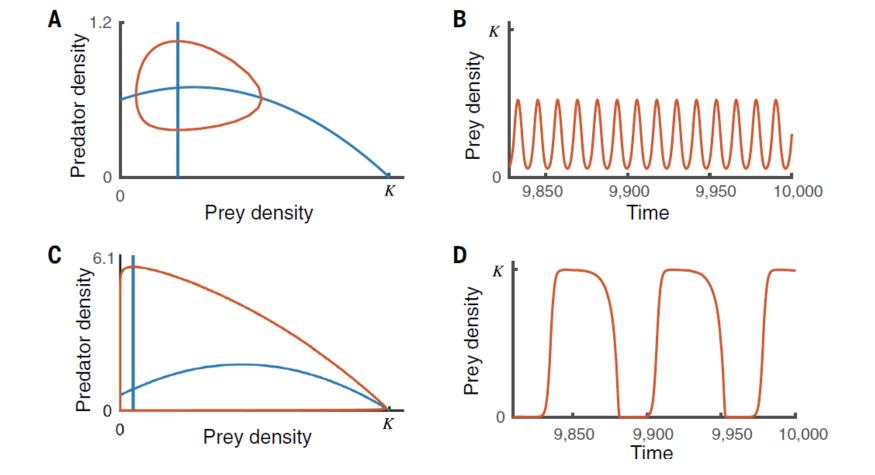




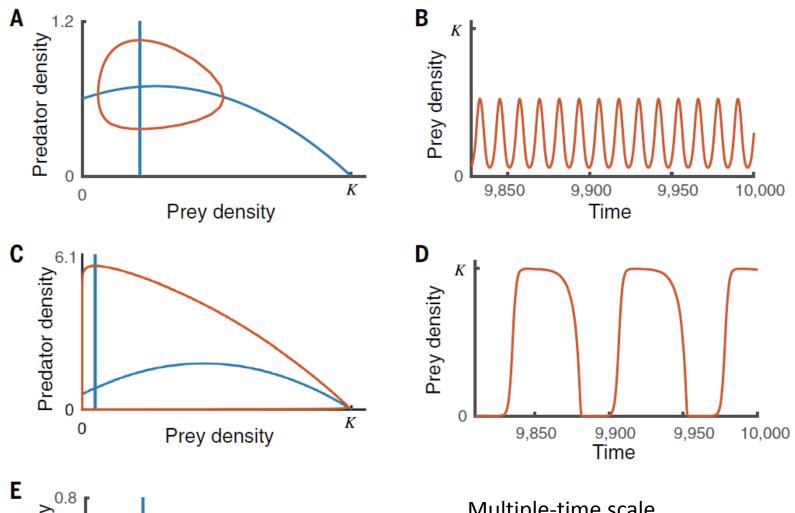
Dynamical systems ideas can help to 'classify' transients

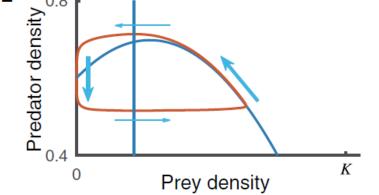

- Ghost attractor
- Crawl-bys

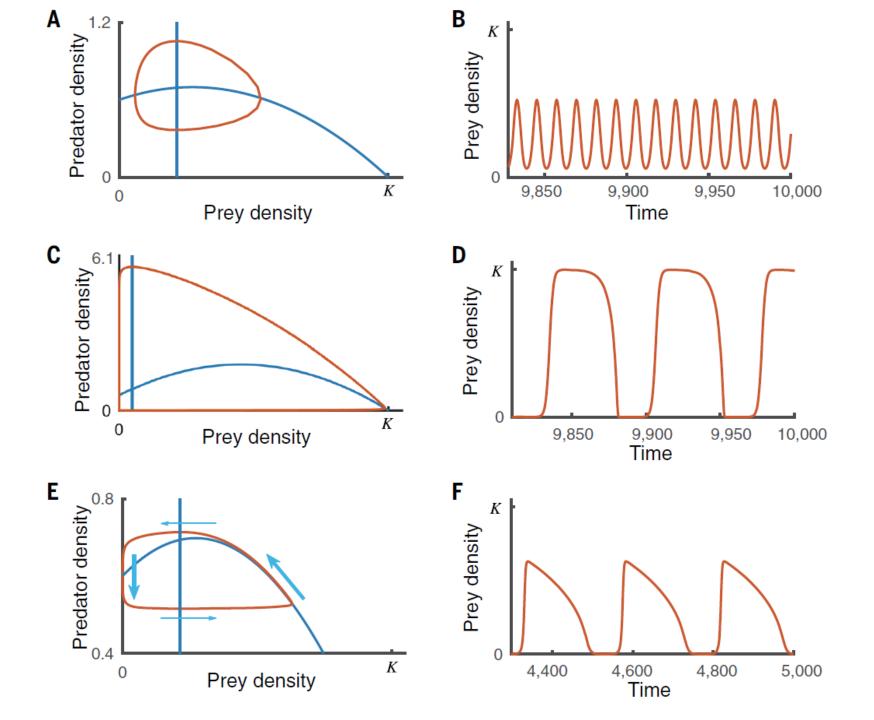

Predator-Prey dynamics


- dH/dt = rH(1-H) f(H)P
- dP/dt = cf(H) P
- Illustrate with phase planes

No transients for this predator prey dynamic as illustrated in a phase plane






Dynamical systems ideas can help to 'classify' transients

- Ghost attractor
- Crawl-bys
- Slow-fast dynamics

Multiple-time scale dynamics lead to transients

We have already seen high dimension and stochasticity

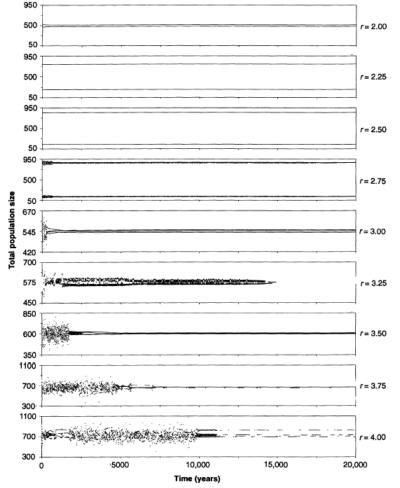
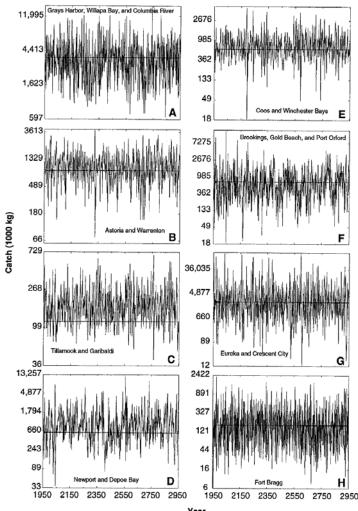



Fig. 1. Dynamics of a spatially structured model (1-3) of a population with pelagic larvae along a coastline as a function of the growth rate r. In all cases, the initial conditions were chosen randomly in space from a uniform distribution, and D = 800. The presence of long transients is apparent from the plots for all values of $r \ge 3.25$.

Type of LT	Relationship to invariant set	Relationship to bifurcation	Dynamics mimicked by LT	Possibility of recurrent LTs?	Biological example
Ghost (Fig. 2)	No invariant set	Occurs past a bifurcation where stable equilibrium is lost	Equilibrium, cycles, chaos	No	Forage fish (27) (Fig. 3B)
Crawl-by (Fig. 3, C and D)	Caused by saddle-type invariant set	None necessary	Equilibrium, cycles, chaos	Yes	Phytoplankton-grazer models (26)
Slow-fast systems (Fig. 3, E and F)	None necessary	Multiple time scales	Periodic or aperiodic cycles	Yes, if invariant set(s) present	Univoltine insects (2) (Fig. 3C)
High dimension (e.g., time delays, space) (Fig. 4A)	None necessary	None necessary	Equilibrium, cycles, chaos	Yes	Chemostat microbial communities (57)
Stochasticity	If invariant set present:	None necessary	Aperiodic cycles, chaos		
(Fig. 4B)	lf invariant set absent:	Past a bifurcation where cycles/chaos are lost	Quasi-periodic cycles	Yes	Cancer crabs (53)

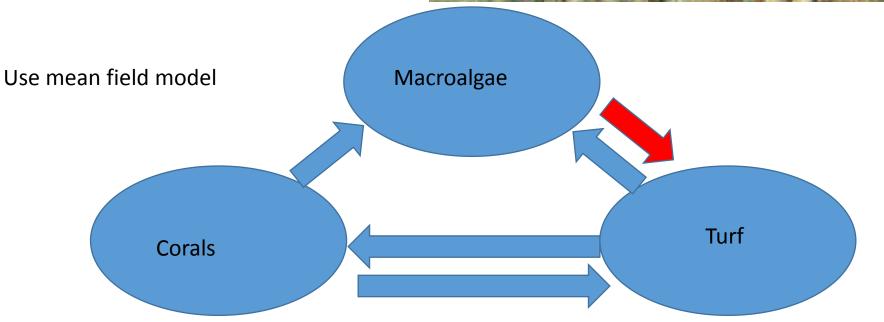
Table 2. Empirical evidence for long ecological transients.

B		Duration	
Population(s)	Observed pattern	Generations	Years
Laboratory population of beetles (<i>Tribolium</i> spp.) (25)	Switch from a regime with an almost constant density to large-amplitude oscillations	15	~1.5 (70 weeks)
Growth of macrophytes in shallow eutrophic lakes in the Netherlands (46)	Switch from a macrophyte-dominated state to a turbid water state	1 to 5	1 to 5
Population of large-bodied benthic fishes on the Scotian Shelf of Canada's east coast (27)	Switch from a forage fish (and macroinvertebrate)–dominated state to a benthic fish–dominated state	5 to 8	20
Coral and microalgae in the Caribbean (47, 48)	Shifts from coral to macroalgal dominance on coral reefs	20 to 25 (corals); 50 to 100 (macroalgae)	10
Voles, grouse in Europe (59)	Switch between cyclic and noncyclic regimes, or between cyclic regimes with different periodicity	60 (voles); 20 to 30 (lemmings); 5 (grouse)	~30
Dungeness crab (Cancer magister) (53)	Large-amplitude transient oscillations with further relaxation to equilibrium	10 to 15	45
Zooplankton-algal interactions in temperate lakes in Germany (26)	Variation of amplitude and period of predator-prey oscillations across the season	80 to 100 (algae); 5 to 8 (zooplankton)	1
Planktonic species in chemostat and temperate lakes (72)	Long-term variation of species densities, with extinction of some species	40 to 100	~0.05 to 0.15 (3 to 8 weeks)
Laboratory microbial communities (56)	Slow switch between alternative stable states	20 to 40	0.11 to 0.21 (6 to 12 weeks
Grass community in abandoned agricultural fields in the Netherlands (57)	Long-term existence of a large number of alternative transient states	10	9
Extinction debt phenomena as a consequence of habitat loss [plants, birds, fish, lichens, and others (60)]	Long-term extinction of populations, occurring either steadily or via oscillations	20 to 100 (or more)	1 to 100
Fish and invertebrates in watersheds in western North Carolina, USA (49)	Influence of past habitat structure on present biodiversity patterns after restoration	10 to 20 (fish); 40 (invertebrates)	40
Modeled spruce budworm outbreaks in balsam fir forests (2)	Budworm outbreaks driven by slow changes in condition of fir foliage	5 (refoliation); 50+ (budworm)	50

Cannot overemphasize how important this is for management

Ecosystems can have multiple stable states

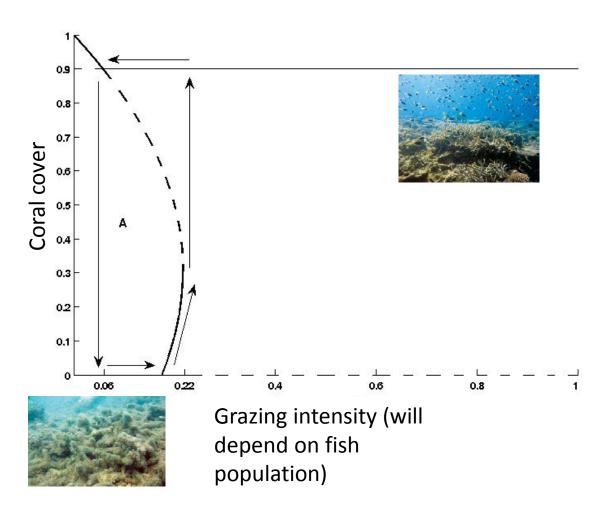
Ecosystems can have multiple stable states



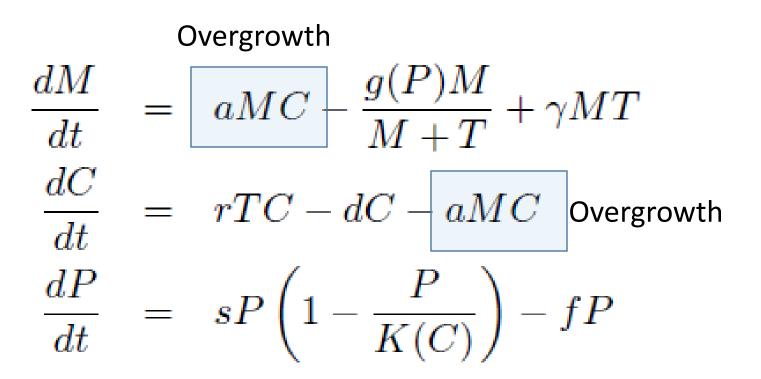
An example: coral reefs and grazing

- Demonstrate the role of hysteresis in coral reefs by extending an analytic model (Mumby *et al.* 2007*) to explicitly account for parrotfish dynamics (including mortality due to fishing)
- Identify when and how phase shifts to degraded macroalgal states can be prevented or reversed
 - Provide guidance to management decisions regarding fishing regulations
 - Provide ways to assign value to parrotfish

Grazing a key driver for corals



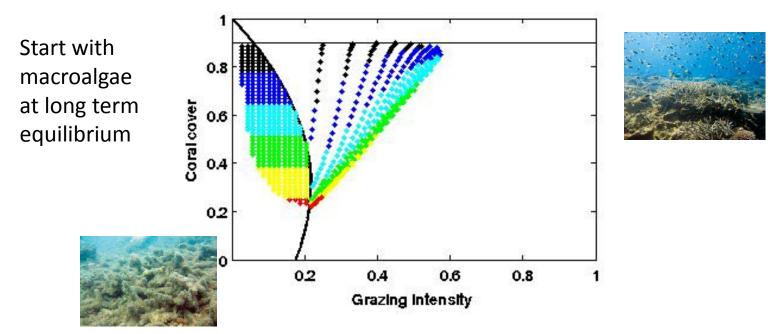
Grazing



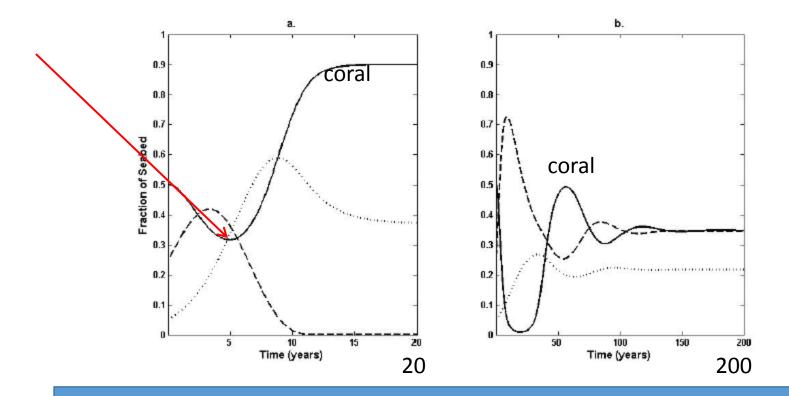
Outome depends on grazing intensity – hysterisis

- Coral cover versus grazing intensity using the original model
- Solid lines are stable equilibria, dashed lines are unstable
- Arrows denote the hysteresis loop resulting from changes in grazing intensity
- The region labeled "A" is the set of all points that will end in macroalgal dominance without proper management

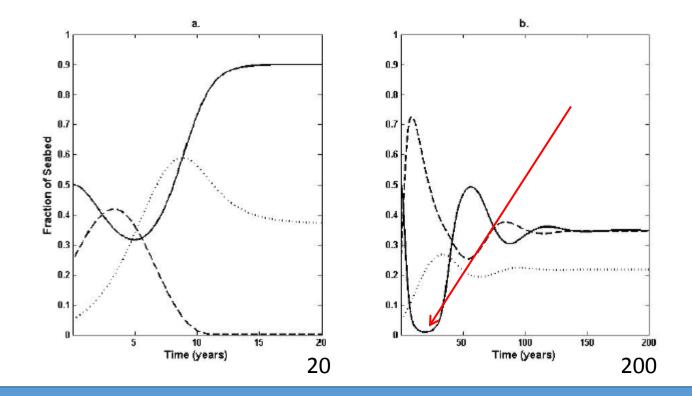
Simple analytic model



• Blackwood, Hastings, Mumby, Ecol Appl 2011; Theor Ecol 2012


• But parrotfish are subject to fishing pressure, so need to include the effects of fishing and parrotfish dynamics, and only control is changing fishing

Coral recovery via the elimination of fishing effort


Points in the colored region are points that can be controlled to a coral-dominated state and the points outside of the region are the ending location after 5 years with no fishing mortality

Recovery time scale depends on fishing effort level and is not monotonic

Complete reduction of fishing on the left

Recovery time scale depends on fishing effort level and is not monotonic

More realistic by 65% reduction of fishing on the right

Conclusions

- Transient dynamics are key for answering important ecological questions on relevant timescales
- Transient dynamics are important for management
- Many ecological systems definitely exhibit transient dynamics
- Distinguishing transient dynamics from asymptotic behavior is a challenge
- Concepts from dynamical systems provide a way to classify and understand transients (why and when)
- Further challenges from non-autonomous systems
- Tipping points are a phenomenon that is associated with transients

Mathematical challenges

 Dynamical systems with realistic stochasticity on realistic time scales and possible nonautonomous aspects