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Hodge Theory and Moduli∗

Phillip Griffiths

∗Talk given in Miami at the inaugural conference for the Institute of
the Mathematical Sciences of the Americas (IMSA) on September 7,
2019. Based in part on joint work in progress with Mark Green, Radu
Laza, Colleen Robles and on discussions with Marco Franciosi, Rita
Pardini and Sönke Rollenske (FPR).
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Outline

I. Introduction

II. Hodge theory

III. Moduli

IV. I -surfaces and MI

Both Hodge theory and birational geometry/moduli are highly
developed subjects in their own right. The theme of this talk
will be on the uses of Hodge theory to study an interesting
geometric question and to illustrate how this works in one
particular non-classical example of an algebraic surface.
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I.A. Introduction

I classification of algebraic varieties is a central problem in
the algebraic geometry (minimal model program)

I It falls into two parts ��
��

HH
HH

discrete invariants
Kodaira dimension
Chern numbers{
continuous invariants
moduli space M.

I Under the second part a basic issue is

What singular varieties does one add to
construct a canonical completion M of M?
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I Basically, given a family {Xt}t∈∆∗ of smooth varieties,
how can one determine a unique limit X0?

I A fundamental invariant of a smooth variety X is the
Hodge structure Φ(X ) given by linear algebra data on its
cohomology H∗(X ).

I one knows �
�
��

Q
Q
QQ

how Φ(X ) varies in families

how to define Φ(X ) when X is singularhow to uniquely define
lim Φ(Xt) for {Xt}t∈∆∗

t → 0
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Goal: Use Hodge theory in combination with standard
algebraic geometry to help understand M

I two aspects �
��
�

HHHH

(A) general theory

(B) interesting examples
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I under (B) there are

I the classical case (curves, abelian varieties, K3’s,
hyperKählers, cubic 4-fold) — space of Hodge structures
is a Hermitian symmetric domain

I some results for Calabi-Yau varieties (especially those
motivated by physics)

I existence of M for X ’s of general type — not yet any
examples of ∂M (the global structure the singular X ’s
nor the stratification of M\M).

I First non-classical general type surface is the I -surface
(pg (X ) = 2, q(X ) = 0, K 2

X = 1, dimMI = 28) —
informally stated we have the
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Main result: The extended period mapping

Φe : MI → P

has degree 1 and faithfully captures the boundary structure of

M
Gor

I .

I Analysis of M
Gor

I was initiated by FPR — first case
beyond Mg (g = 2) where the boundary structure of the
Kollár-Shepherd-Barron-Alexeev (KSBA) canonical

completion M
Gor ⊂M is understood.

I Hodge theory (using Lie theory, differential geometry,
complex analysis) gives us P ⊃ P = Φ(MI ) — the result
says that Φ extends to Φe and the stratification of P

determines that of M
Gor

I — the non-Gorenstein case is
only partially understood.
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II. Hodge theory

A. Selected uses of Hodge theory

These include

I topology of algebraic varieties:

�
�
��

Q
Q
QQ

{
smooth case (PHS’s) —
(Hard Lefschetz)

}
{

singular case (MHS’s) —
also general case, relative case

}


families of algebraic varieties
(LMHS’s) — monodromy
(local and global)


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I geometry of algebraic varieties:

��
��

Q
Q
QQ

{
Torelli questions; rationality and
stable rationality; character varieties

}
{

algebraic cycles — conjectures
of Hodge and Beilinson-Bloch

}
{

direct study of the geometry
of algebraic varieties/Riemann
Θ-divisor, IVHS

}

I moduli of algebraic varieties ��
��

HHHH

classical case

non-classical case

9 / 40



10/40

We will see that geometry, analysis and topology enter here.
Not discussed in this talk are other interesting uses of Hodge
theory including:

I physics ��
��

PPPP

mirror symmetry

{
homological mirror symmetry —
Landau-Ginsberg models etc.

}

I Hodge theory and combinatorics
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B. Objects of Hodge theory

These include

I polarized Hodge structures (V ,Q,F ) (PHS’s);

I period domains D and period mappings Φ : B → Γ\D;

I first order variation (V ,Q,F ,T , δ) of PHS’s (IVHS);

I mixed Hodge structures (V ,W ,F )

I limiting mixed Hodge structures (V ,W (N),Flim)
(LMHS’s);

I IVLMHS.

All of these enter in the result mentioned above.
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PHS (V ,Q,F ) of weight n

I F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC
Hodge filtration satisfying

F p ⊕ F
n−p+1 ∼−→ VC 0 5 p 5 n

I setting V p,q = F p ∩ F
q
, this is equivalent to a Hodge

decomposition

VC = ⊕
p+q=n

V p,q, V p,q = V
q,p
.

Given such a decomposition

F p = ⊕
p′=p

V p′,q

gives a Hodge filtration.
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I Hodge-Riemann bilinear relations ��

HH

{
(HRI)

Q(F p,F n−p+1) = 0{
(HRII)

ip−q(Q)(F p,F
p
) > 0

Notes: One usually defines Hodge structures (V ,F ) without
reference to a Q and HRI, II — only HS’s I have seen used in
algebraic geometry are polarizable — PHS’s form a
semi-simple category — in practice there is also usually a
lattice VZ ⊂ V .
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Example: The cohomology Hn(X ,Q) of a smooth, projective
variety is a polarizable Hodge structure of weight n. The class
L ⊂ H2(X ,Q) of an ample line bundle satisfies

Lk : Hn−k(X ,Q)
∼−→ Hn+k(X ,Q) (Hard Lefschetz)

This then completes to the action of an sl2{L,H ,Λ} on
H∗(X ,Q). This is the “tip of the iceberg” for the uses of the
Lie theory in Hodge theory.

Note: The reason for using the Hodge filtration rather than
the Hodge decomposition is that F varies holomorphically
with X .
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Period mapping Φ : B → Γ\D: For given (V ,Q) and
hp,q’s

I period domain D = {(V ,Q,F ) = PHS, dimV p,q = hp,q}
I D = GR/H where G = Aut(V ,Q), H = compact

isotropy group of a fixed PHS.

Example: D = H = {z ∈ C : Im z > 0} = SL2(R)/ SO(2)

I period mapping is given by a complex manifold B and a
holomorphic mapping Φ · B → Γ\D where Γ ⊂ GZ and

ρ : π1(B)→ Γ

is the induced map on fundamental groups.
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MHS: (V ,W ,F )

I F k ⊂ F k−1 ⊂ · · · ⊂ F 0 = VC Hodge filtration

I W0 ⊂ W1 ⊂ · · · ⊂ W` = V weight filtration

I F induces a HS of weight m on GrWm V = Wm/Wm−1

MHS’s form an abelian category. A most useful property is
that morphisms

(V ,W ,F )
ψ−→ (V ′,W ′,F ′)

are strict; i.e., {
ψ(V ) ∩W ′

n = ψ(Wn)

ψ(VC) ∩ F
′p = ψ(F p).

Example: For X a complete algebraic variety Hn(X ,Q) has a
functorial MHS (where k = ` = n).
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Example: X
π−→ B is a family of smooth projective varieties

Xb = π−1(b) and ρ : π1(B , b0)→ Aut(Hn(Xb0 ,Q)) is the
monodromy representation. Then Φ(b) = PHS on Hn(Xb,Q).

Special case: B = ∆∗ = {t · 0 < |t| < 1} and we have

I ρ (generator) = T ∈ AutHm(Xb0 ,Q)

I T = TssTu where ���

PPP

Tm
ss = Id

Tu = eN where Nm+1 = 0
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LMHS: (V ,W (N),Flim) is a MHS where

I N ∈ EndQ(V ) and Nm+1 = 0 gives unique monodromy
weight filtration

W0(N) ⊂ W1(N) ⊂ · · · ⊂ W2m(N)

satisfying {
N : Wk(N)→ Wk−2(N)

Nk : Gr
W (N)
m+k (V )

∼−→ Gr
W (N)
m−k (V );

I N : F p
lim → F p−1

lim .

Example: Above example where B = ∆∗ — here Γ = {T}.
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Classic Example: X is a compact Riemann surface of
genus 1

I γ

δ

topological picture

I
y 2 = x3 + a(t)x2 + b(t)x + c(t),
ω = dx/y

algebraic picture

I

w

1
C/Z · w + Z analytic picture

I w =
´
γ
ω/
´
δ
ω.
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I The space of LMHS’s (V ,Q,W (N),Flim) has a symmetry
group

I G acts on conjugacy classes of N’s;
I GC acts transitively on

Ď = {(V ,F ) : Q(F p,F n−p+1) = 0};
I Flim ∈ Ď.

Thus one may imagine using Lie-theoretic methods to
attach to the space Γ\D of Γ- equivalence classes of
PHS’s a set of equivalence classes of LMHS’s — then
informally stated one has the result

the images P ⊂ Γ\D of global period mappings
have natural completions P.

The proof that P has the structure of a projective variety is a
work in progress.
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Example: The moduli space of elliptic curves

algebro-geometric object M1
j−→ Cy

Hodge theoretic object SL2(Z)\H

completes by adding ∞ corresponding to the LMHS
associated to

I -

I -

y 2 = x(x − t)(x − 1) −→ y 2 = x2(x − 1)
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w

w → i∞

C/Zw + Z→ C/Z ∼= C∗

IVHS: (V ,F ,T , δ) where (V ,F ) is a HS and{
δ : T →

p
⊕Hom

(
GrpF VC,Grp−1

F VC
)

[δ, δ] = 0.
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Example: Φ∗ for a period mapping.

Example: For Mg , g = 3, the IVHS is equivalent to the
quadrics through the canonical curve

C → Pg−1 = PH0(Ω1
C )∗.

Example (work in progress): The equation of a smooth
I -surface can be reconstructed from Φ∗.
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III. Moduli

I Basic discrete invariant of an algebraic variety is its
Kodaira dimension κ

Curves: g = h0(Ω1
C ) = dimH0(Ω1

C )



g = 0 κ = −∞

g = 1 κ = 0

g = 2 κ = 1
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Theorem (Deligne-Mumford): For curves of general type
there exists a moduli space Mg with an essentially smooth
projective completion Mg

I dimMg = 3g − 3;

I one knows what the boundary curves look like both
locally (singularities) and globally.

Surfaces: 
κ = −∞ rational

κ = 0 abelian varieties, K3’s

κ = 1 elliptic surfaces

κ = 2 general type.
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I For general type surfaces the basic discrete invariants are
I c2

1 = K 2
X , c2 = χtop(X ) — both are positive

I Noether’s inequality for pg (X ) = h0(Ω2
X )

pg (X ) 5

(
1

2

)
c2

1 + 2;

extremal surfaces are of particular interest.

Theorem (Kollár-Shepherd-Barron-Alexeev =
KSBA): For surfaces of general type with given c2

1 , c2 there
exists a moduli space M with a canonical projective
completion M.
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I expected dimension M = 1
12

(c2 − 14c2
1 ) = 28 for

I -surfaces
I differences between surface and curve cases

(a) one knows what the boundary surfaces look like locally,
but does not know this globally — only one partial
example (FPR);

(b) ∂M is (highly) singular.

Main points: Hodge theory can sometimes help us to
understand (a) and (b).
I Guiding question: Are all of the Hodge-theoretically

possible degenerations realized algebro-geometrically?

Theorem (work in progress): We have

M
Φ−→ P ⊂ Γ\D

∩ ∩
M

Φe−→ P.

where P is constructed Hodge theoretically.
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The stratification of P has two aspects:

(i) using the conjugacy class of N ;

(ii) within each Di corresponding to a particular stratum we
have the Mumford-Tate sub-domains.

Example: When the weight n = 1 we have N2 = 0 and the
only invariant is the rank of N — then (i) gives a schematic
(here dimV = 2g)

I0 I1 · · · Ig .

Within each Ik we have for (ii) the Mumford-Tate sub-domains
correspond to reducible PHS’s that are direct sums.
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Example: When g = 2 the Hodge theoretic stratification of
P gives for (i)

I0 I1 I2

and using (ii) we get the following stratification of M2:
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For use below we remark that a general curve of genus g = 2
has the affine equation

y 2 =
6∏

i=1

(x − ai).

In the weighted projective space P(1, 1, 3) with coordinates
(x0, x1, y) the equation is

y 2 =
6∏

i=1

(x1 − aix0) = F6(x0, x1).
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Example of how Hodge theory is used
I X∗ → ∆∗ is any family of g = 1 curves {Xt}t⊂∆∗ .
I Monodromy T : H1(Xt0 ,Z)→ H1(Xt0 ,Z) — in terms of a

standard basis δ, γ

T =

(
a b

c d

)
∈ SL2(Z).

I Φ(t) =
´
γ
ωt/
´
δ
ωt is the multi-valued period mapping —

Φ(e2πi t) = TΦ(t).

I This gives

z

��

∈

e2πiz =

H

��

w // H

��
t ∈ ∆∗ // {T}\H

w(z + 1) = Tw(z).
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Lemma 1: Eigenvalues µ of T are roots of unity (T k
ss = Id).

Lemma 2: Φ(t)=m log t
2πi

+h(t) where h(t) holomorphic in ∆.

Proof of Lemma 1: For tn = e2πizn → 0, using the
SL2(R)-invariant Poincaré metric ds2

H = dzdz̄
(Im z)2

zn zn + 1

d(zn, zn + 1) = 1
Im zn
→ 0

s s
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Schwarz lemma gives that w is distance decreasing in the
Poincaré metric

d(w(zn),Tw(zn))→ 0.

For w = i ∈ H and wn = Anw , An ∈ SL2(R) and invariance of
ds2

H gives

d(w ,A−1
n TAnw)→ 0ww�

A−1
n TAn → isotropy group SO(2) of www�

|µ| = 1ww�
µm = 1.
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Proof of Lemma 2: For a choice of δ, γ we will have

T =

(
1 m

0 1

)
— thus

Φ(t) =
m log t

2πi
+ h(t)

where h(t) is single valued. Another use of the Schwarz
lemma gives that h is bounded. �

Above argument used

I differential geometry (negative curvature of ds2
H)

I Lie theory (H = SL2(R)/ SO(2))

I complex analysis.
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IV. I -surfaces and MI

I In P(1, 1, 2, 5) with coordinates [x0, x1, y , z ] the equation
of the I -surface X is

z2 = F10(x0, x1, y) = G5(x0, x1)y + H10(x0, x1).

It may be pictured as a 2:1 covering of

P
V

= P(1, 1, 2)

which has branch curve P + V where V is a quintic. Over
a ruling of the quadric cone we obtain a covering of P1

branched over six points; i.e., a pencil of genus 2 curves.
Thus I -surfaces are an analogue of g = 2 curves.
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I The diagram (i) for this case is

II
MMM

MMM
M

I0 I

sssssss
IV V

III

KKKKKK
qqqqqq

Note that it is non-linear. It is transitive, but this fails
when the weight n = 3.

I Within each of these there is the further stratification by
Mumford-Tate domains — here the stratification is by the
conjugacy class of the semi-simple part of monodromy —
for normal Gorenstein I -surfaces the resulting
classification is
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stratum dimension minimal
resolution X̃

I0 28 canonical singularities

I2 20 blow up of
a K3-surface

I1 19
minimal elliptic surface

with χ(X̃ )=2

III2,2 12 rational surface

III1,2 11 rational surface

III1,1,R 10 rational surface

III1,1,E 10 blow up of an
Enriques surface

III1,1,2 2
ruled surface with

χ(X̃ )=0

III1,1,1 1
ruled surface with

χ(X̃ )=0
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I Difference from Mg is that ∂MI is singular — extension
data in the LMHS provides a guide as to how to
desingularize MI .

Example: MI2

I Picture of X ∈MI2 :

C
Xmin,C

2 = 2

p
(X , p)

C̃
E

X̃ (X̃ , C̃ ), C̃ 2 = −2
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I Xmin = degree 2 K3 surface;

I Xmin → P2 branched over sextic B

B

L
C → L

I # moduli (Xmin,C ) = 19 + 1 = 20 = dimMI2 ;

I C̃ ⊂ P2 is cubic and extension data in the LMHS arising
from H2(X̃ , C̃ ) gives seven points on C̃ ;

I blowing these up gives a del Pezzo surface Y — then

I C̃ ∪
C̃
Y gives the 20 + 7 = 27 dimensional blowup of

MI2 and provides a desingularization of M
Gor
I along MI2 .
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Conclusion: The structure of P may be analyzed using Lie
theory — using the extended period mapping it provides a

faithful guide to the structure of M
Gor

I .
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