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Part I: Introduction

In complex analysis:

z1/2 is a 2-valued, “branched” holomorphic function on C.

Rez1/2 is a 2-valued, “branched” harmonic function.
The multi-valued difficulty can be resolved by:

passing to a cover;

working with sections of a flat bundle over C \ {0}.
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Let (Mn, g) be a Riemannian manifold and Σ ⊂ M a co-oriented
codimension-2 submanifold.

We can consider multivalued functions on M, branched over Σ.

That is, sections u of a flat R-line bundle L → M \ Σ with
monodromy −1 around Σ.

Local coordinates (z, t):

z ∈ C transverse to Σ;

t ∈ Rn−2 along Σ.
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FACT: If Δu = 0 near Σ and u is bounded then u has
asymptotics

u ∼ Re
(

a(t)z1/2 + b(t)z3/2) + O(|z|5/2).

More invariantly, a ∈ Γ(Σ, N−1/2), b ∈ Γ(Σ, N−3/2) where N → Σ
is the normal bundle (regarded as a complex line bundle).
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The problem we consider here is to adjust Σ so that the leading
term a vanishes.
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Rotationally invariant model.
Take M = C × R and u = r−1/2f (r , t) cos(θ/2). So f (r , t) is a
function on the half-plane {r ≥ 0}. The equation Δu = 0 is the
ordinary Laplace equation (∂2

r + ∂2
t )f = 0.

The conditions that u is bounded and the r1/2 term vanishes
become the combined Dirichlet and Neumann boundary
conditions f = 0, ∂r f = 0 on the boundary of the half-plane.

Simon Donaldson Branched harmonic functions and some related developments in differential geometry



To make things precise, we consider two specific problems,
with M compact.

1 (“Poisson equation”). Fix ρ with support away from Σ.
There is a bounded solution of Δu = ρ, hence harmonic
near Σ. Can we adjust Σ to arrange that the z1/2 term
vanishes?

2 (“Hodge theory”). Let L̃ be a lift of L to an affine bundle with
fibre R. There is a section u of L̃ with Δu = 0. Can we
adjust Σ to arrange that the z1/2 term vanishes?
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Remark on (2).
The lifts L̃ of L are classified by elements χ of a cohomology
group H1(L). If M̃ → M is the double cover of M branched over
Σ then H1(L) can be identified with H1(M̃)−, the −1
eigenspace of the action of the involution on H1(M̃).

Then the derivative du is a well-defined 1-form on M̃ and when
Δu = 0 it is the harmonic 1-form representing this class in
H1(M̃)− with respect to the singular Riemannian metric on M̃
lifted from g on M.
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These problems can be regarded as codimension-2 analogues
of free boundary value problems. (Where one imposes Dirichlet
and Neumann boundary conditions, with the boundary as an
additional variable.)
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We state our main result for the second problem. So for any
Σ, g, χ we have terms a(Σ, g, χ), b(Σ, g, χ) in the asymptotic
expansion around Σ.

Theorem Suppose that a(Σ0, g0, χ0) = 0 and that b(Σ0, g0, χ0)
is nowhere-vanishing on Σ. Then for g, χ sufficiently close to
g0, χ0 there is a unique solution Σ close to Σ0 such that
a(Σ, g, χ) = 0.

Here “close” refers to the C∞ topology.
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In short, the equation a(Σ, g, χ) = 0 defines Σ implicitly as a
function of g, χ, for small variations.
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Part II: Motivation

Why should we be interested in these questions?

It would not be surprising if similar questions arise in other
areas of mathematics, but here we discuss some related topical
developments in differential geometry, many connected to
special holonomy. What we outline is in part conjectural or
work in progress.
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1. The “classical case” : dim M = 2.

Here Σ ⊂ M is a finite set and M̃ → M is a double branched
cover of compact Riemann surfaces. If Δu = 0 the square
(du)⊗2 can be regarded as a quadratic differential on M and the
condition that a = 0 is the condition that this has zeros rather
than poles at Σ. Our result reduces to the well-known statement
that the quadratic differentials on M are locally parametrised by
the periods of their square roots, which are 1-forms on M̃.
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2. Connections with special Lagrangian geometry

Let N be a complex n-dimensional Calabi-Yau manifold with
holomorphic n-form Θ and Kähler form ω. Recall that a
Lagrangian submanifold Mn ⊂ N is a submanifold such that
ω|M = 0 and M is special Lagrangian if also Re(Θ)|M vanishes.
Special Lagrangian submanifolds are volume minimising.

One phenomenon of interest for minimal submanifolds is that a
sequence of such can converge to a limit with multiplicity.
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Suppose that M ⊂ N is special Lagrangian. The deformations
of M among Lagrangian submanifolds are locally described as
the graphs of derivatives df of functions f on M. The
linearisation of the special Lagrangian condition, for small
variations, is the Laplace equation Δf = 0.

If u is a branched harmonic function with a = 0, as above, then
the derivative du is O(|z|1/2) which fits with the standard model
of a double cover M̃ ⊂ N.
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It is reasonable to expect that these give deformations of M to
1-parameter families of special Lagrangians converging to M,
taken with multiplicity 2.
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3. Collapsing limits and discriminant sets
In general, one can consider a manifold X with some special
structure fibred over a base M, with singular fibres over a
“discriminant set” Σ ⊂ M.

Simon Donaldson Branched harmonic functions and some related developments in differential geometry



A well-known case is the Strominger-Yau-Zaslow picture of a
Calabi-Yau manifold X with a special Lagrangian fibration.

Here we consider another case when dim M = 3, the manifold
X is a 7-dimensional manifold with a G2-structure and the
smooth fibres are co-associative submanifolds, diffeomorphic to
a K3 surface.
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For a certain natural singularity model (“Kovalev-Lefschetz
fibrations”) the discriminant set Σ is a codimension
2-submanifold. When the fibres are very small (near the
collapsed limit) there is an adiabatic approximation to the
geometry involving a branched section of a flat affine bundle
solving a nonlinear variant of the Laplace equation and with
O(|z|3/2) behaviour transverse to Σ.
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4. Gauge theory
This refers to pioneering work of Taubes (from c. 2012), and
further developments by Walpuski, Haydys, Doan, Takahashi,
Zhang . . . .
One considers equations for a pair (A, φ) where A is a
connection on a bundle over a Riemannian manifold, usually of
dimension 3 or 4, and φ is an auxiliary field. The issue is the
convergence of sequences of solutions. Well-known older
results:

If φ is absent and the equation is the instanton equation for
the connection A over a 4-manifold then there is
convergence modulo “Uhlenbeck bubbling” over a finite set
in the 4-manifold.

For the Seiberg-Witten equations, when A is a U(1)
connection and φ is a spinor field, the special features of
the equation give convergence in a strong sense.
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Taubes et al discover a new phenomenon in which, for many
equations (Vafa-Witten, Kapustin-Witten, . . . ), there is
convergence away from a codimension 2-set and the limit is
singular, with a multivalued, branching, behaviour of the kind
we discussed above.
Many of these equations arise as dimension reductions of
“instanton” equations over manifolds of special holonomy and
the results are conjecturally related to singular solutions of
these equations in higher dimensions.
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Part III: Proof
Recall that the assertion is that the equation a(Σ, g, χ) = 0
defines the submanifold Σ implicitly as a function of the data
g, χ.
We ignore the complication that the space Γ(N−1/2) in which
a(Σ, g, χ) lives depends on Σ.

If we had a suitable Banach space set-up we could invoke the
standard implicit function theorem: if a were a smooth map
between Banach spaces with the partial derivative δa

δσ surjective
then the statement would hold.
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The variation δΣ is given by a normal vector field v ∈ Γ(N). So
the partial derivative is a map

LΣ : Γ(N) → Γ(N−1/2).
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When a = 0 it is not hard to see that

LΣ(v) =
3
2

b.v ,

where the right hand side is the algebraic contraction

N−3/2 ⊗ N → N−1/2.

This is essentially the formula

d
dz

z3/2 =
3
2

z1/2.

If b is nowhere-vanishing then this operator LΣ is certainly
invertible.
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But when a 6= 0 there is an extra term:

LΣ(v) =
3
2

b.v + P(a.v)

where P : Γ(N1/2) → Γ(N−1/2) is a pseudodifferential operator
of order +1 over Σ.

However small a is, the extra term dominates on high
frequencies.

This shows that we cannot fit our problem into a Banach space
set-up.
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Fortunately, there is a version of the Nash-Moser theory
(Nash-Moser-Zehnder-Hamilton) which exactly meets the case.
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The pseudodifferential operator P is derived from the Green’s
function G for the Laplace operator on sections of L. This has
asymptotics

G((z1, t1)(z2, t2)) ∼ Re
(
Γ(t1, t2)z

1/2
1 z−1/2

2

)
.

The operator P is given by a regularised version of the
(divergent) integral

(Pf )(t1) =

∫

Σ
Γ(t1, t2)f (t2)dt2.
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As in:

limε→0

(∫

|t |>ε

f (t)
t2 − 2ε−1f (0)

)
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