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It all started with a conversation with biologists....

Doug Boyer

Jukka Jernvall

More Precisely: biological morphologistsy
Study Teeth & Bones of

extant & extinct animals∣∣
still live today fossils



First: project on “complexity” of teeth

Then: find automatic way to compute Procrustes distances
between surfaces — without landmarks

Landmarked Teeth −→

d2
Procrustes (S1, S2) = min

R rigid tr.

J∑
j=1

‖R (xj )− yj‖2

Find way to compute a distance that does as well,
for biological purposes, as Procrustes distance,
based on expert-placed landmarks, automatically?
examples: finely discretized triangulated surfaces
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Data Acquisition

Surface reconstructed from µCT-scanned voxel data
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The Shape Space of k landmarks in R3



Geometric Morphometrics: Limitation of Landmarks

• Landmark Placement: tedious
and time-consuming

• Fixed Number of Landmarks:
lack of flexibility

• Domain Knowledge: high
degree of expertise needed, not
easily accessible

• Subjectivity: debates exist
even among experts
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conformal Wasserstein neighborhood
                 distance



Continuous Procrustes Distance (cPD)

DcP (S1,S2) =

( ∫
S1

‖ x − C (x) ‖2 dvolS1 (x)

) 1
2

,

where C : S1 → S2 is an area-preserving diffeomorphism. so as to
wrap into the next line
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Continuous Procrustes Distance (cPD)

DcP (S1,S2) =

(
inf

C∈A(S1,S2)
inf

R∈E(3)

∫
S1

‖R (x)− C (x) ‖2 dvolS1 (x)

) 1
2

,

where A (S1, S2) is the set of area-preserving diffeomorphisms
between S1 and S2, and E3 is the Euclidean group on R3.



Continuous Procrustes Distance (cPD)

dcP (S1, S2) = inf
C∈A

inf
R∈E3

(∫
S1

‖R(x) − C(x) ‖2 dvolS1(x)

)1/2

d12

−−−→



We defined 2 different distances

dcWn (S1,S2): conformal flattening
comparison of neighborhood geometry
optimal mass transport

dcP (S1,S2): continuous Procrustes distance



Bypass Explicit Feature Extraction

S1

S2

Correspondence-Based Shape Distances

D (S1,S2) = inf
f ∈A (S1,S2)

F (f ;S1,S2)



Multi-Dimensional Scaling (MDS) for cPD Matrix



Diffusion Maps: “Knit together” local geometry to get
“better” distances

Small distances are much more reliable!
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Diffusion Maps: “knitting together” local geometry

dij

Si

Sj

• P = D−1W defines a random
walk on the graph

• Solve eigen-problem

Puj = λjuj , j = 1, 2, · · · ,m

and represent each individual
shape Sj as an m-vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)
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Diffusion Distance (DD)
Fix 1 ≤ m ≤ N, t ≥ 0,

Dt
m (Si ,Sj) =

(
m∑

k=1

λtk (uk (i)− uk (j))2

) 1
2
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MDS for cPD & DD

cPD DD



Even better can be obtained!

HBDD DD
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Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F
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Horizontal Diffusion Maps: Embedding the Entire Bundle
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Horizontal Diffusion Maps
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Automatic Landmarking — Interpretability
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Horizontal Diffusion Maps: Embedding the Base Manifold
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Horizontal Diffusion Maps: Embedding the Base Manifold

u1[1] u2[1] u3[1] u4[1] uκ−1[1] uκ[1] 7→
(〈
ui [1], uj[1]

〉)κ
i,j=1
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Horizontal Diffusion Maps: Embedding the Base Manifold

u1[2] u2[2] u3[2] u4[2] uκ−1[2] uκ[2] 7→
(〈
ui [2], uj[2]

〉)κ
i,j=1
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Horizontal Diffusion Maps: Embedding the Base Manifold

u1[3] u2[3] u3[3] u4[3] uκ−1[3] uκ[3] 7→
(〈
ui [3], uj[3]

〉)κ
i,j=1
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Horizontal Diffusion Maps: Embedding the Base Manifold

u1[4] u2[4] u3[4] u4[4] uκ−1[4] uκ[4] 7→
(〈
ui [4], uj[4]

〉)κ
i,j=1
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Species Clustering

Horizontal Base Diffusion Distance (with Maps) Diffusion Distance (without Maps)
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Species Clustering

invisible?

Horizontal Base Diffusion Distance (with Maps)
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