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Setting for Geometric Recursion.

Consider the following setting:

S = Category of compact oriented surfaces (Morphisms are isotopy classes of diffeo’s).

V = Category of vector spaces.

A functor E : S → V
A functorial assigment ΩΣ ∈ E(Σ) for every object Σ of S.

We note that in fact
ΩΣ ∈ E(Σ)ΓΣ ,

where ΓΣ is the mapping class group of Σ.

Many construction in low dim. geometry and topology fit in this framework:

Ex. 1.The constant function one on Teichmüller space TΣ:

E(Σ) = C0(TΣ), ΩΣ = 1 ∈ E(Σ)ΓΣ

Ex. 2. Sums over all simple closed multi-curves as a functions on Teichmüller space:

E(Σ) = C0(TΣ), ΩΣ(σ) =
∑
γ∈SΣ

∏
c∈π0(γ)

f (lσ(γc )), σ ∈ TΣ.

• SΣ = multi-curves = the set of isotopy classes of embedded closed 1-dim. manifolds in
Σ, such that no component is isotopic to a boundary component, nor are any two different
components isotopic.
• f : R+ → C is decaying sufficiently fast at infinity.
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Setting for Geometric Recursion.

Ex. 3. Functions on Teichmüller space via spectral theory:

E(Σ) = C0(TΣ), ΩΣ(σ) = Tr(f (−∆σ))

• f : R→ C is sufficiently fast decaying at infinity and ∆σ Dirichlet-Laplace-Beltrami
operator on the Riemann surface Σσ , σ ∈ TΣ.

Ex. 4. Weil-Petersson symplectic form on Teichmüller space:

E(Σ) = Ω2(TΣ), ΩΣ = ωWP.

Ex. 5. Bers complex structure IBers on Teichmüller space:

E(Σ) = C∞(TΣ,End(TTΣ)), ΩΣ = IBers.

Ex. 6. Closed form on Teichmüller space:

E(Σ) = Ω∗(TΣ), ΩΣ ∈ Ω∗(TΣ)ΓΣ , dΩΣ = 0.
• Representing non-trivial cohomology classes on moduli space of curvesM(Σ) = TΣ/ΓΣ.

Ex. 7. Fock-Rosly Poisson structure PFR on moduli spaces of flat connections MG (Σ):

E(Σ) = C∞(MG (Σ),Λ2TMG (Σ)), ΩΣ = PFR ∈ E(Σ)ΓΣ .
• G any semi-simple Lie group either complex or real.

Ex. 8. Narasimhan-Seshadri complex structure on moduli spaces of flat connections MG (Σ, c):

E(Σ) = C∞(TΣ,C
∞(MG (Σ, c),End(TMG (Σ, c))), ΩΣ = INS ∈ E(Σ)ΓΣ .

• G any real semi-simple Lie group and c is an assignment of conjugacy classes to each
boundary components of Σ, in which we assume the holonomy around each boundary
component is contained.



Setting for Geometric Recursion.

Ex. 9. Ricci potentials on the moduli spaces of flat connections MG (Σ, c):

E(Σ) = C∞(TΣ,C
∞(MG (Σ, c))), ΩΣ = FRicci ∈ E(Σ)ΓΣ .

Ex. 10. Hitchin’s Hyper-Kähler structure on moduli spaces of parabolic Higgs bundles:

E(Σ) = C∞(TΣ,C
∞(MG (Σ, c),End(TMG (Σ, c)))×3, ΩΣ = (I , J,K)Hitchin ∈ E(Σ)ΓΣ .

• G is a complex semi-simple Lie group and c is as before.

Ex. 11. Representations of mapping class groups ρ : ΓΣ → Aut(V ):

E(Σ) = Ω1(T , T × End(V )), ΩΣ = uρ ∈ E(Σ)ΓΣ .

Ex. 12. Boundary vectors in TQFT Z :

E(Σ) = Z(Σ), ΩΣ = Z(X 3) ∈ E(Σ)ΓX , ∂X = Σ.

Ex. 13. Any invariant I3 of closed oriented 3-manifolds:

E(Σ) = C[Heegaard diagrams (α, β) on Σ]∗, ΩΣ = I3 ∈ E(Σ)ΓΣ , I3(α, β) = I3(X 3
(α,β)

).

Ex. 14. Any invariant I4 of smooth closed oriented 4-manifolds:

E(Σ) = C[Tri-section diagrams (α, β, γ) on Σ]∗,ΩΣ = I4 ∈ E(Σ)ΓΣ , I4(α, β, γ) = I4(X 4
(α,β,γ)

).

Ex. 15. Closed forms representing cohomology classes from Gromov-Witten Theory:

E(Σ) = Ω∗(TΣ), ΩΣ = ϕGW ∈ E(Σ)ΓΣ .

Ex. 16. Amplitudes in closed string theory:

E(Σ) = Ωtop(TΣ), ΩΣ = AΣ ∈ E(Σ)ΓΣ .



Domain and target categories for Geometric Recursion.

The category of surfaces we consider S:

Objects: Compact oriented surfaces Σ of negative Euler characteristic with a marked point
on each boundary component together with an orientation of the boundary, such that
∂Σ = ∂−Σ ∪ ∂+Σ, and such that the inclusion map ∂−Σ ⊂ Σ induces π0(∂−Σ) ∼= π0(Σ).

Morphisms: Isotopy classes of orientation preserving diffeomorphisms which preserves
marked points and orientations on the boundary modulo isotopies which also preserves all
this structure.

The category of vector spaces V:

Objects: Hausdorff, complete, locally convex topological vector spaces over C.

Morphisms: Morphisms of locally convex topological vector spaces.
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Main Idea behind Geometric Recursion

Suppose now we have a functor

E : S → C.

We want to recursively define for every object Σ of S

ΩΣ ∈ E(Σ)ΓΣ

recursing in the Euler characteristic χ = χ(Σ). The basic idea is
to recursively remove pairs of pants which are embedded around the
components of ∂−Σ, so that χ goes up by one in each step ending
with χ = −1 which is a pair of pants P or a one holed torus T .

This will require:

• Disjoint union morphisms: t : E(Σ1)× E(Σ2)→ E(Σ1 t Σ2)
• Glueing morphisms: Θβ : E(Σ1)× E(Σ2)→ E(Σ1 ∪β Σ2)
for subset β ⊂ π0(∂+Σ1)× π0(∂−Σ2) consisting of disjoint pairs.
• Starting data A ∈ E(P)ΓP , D ∈ E(T )ΓT giving ΩP = A,ΩT = D.
• Recursion data Bb (b ∈ π0(∂+P)), C ∈ E(P).

γc
b1

bi

c

Bb1.bi
Pc

ΩΣc

The B case.

b1

γ1c

c

Cb1
Pc

γ2c

ΩΣc

The C case.

b1

γ1c

c

Cb1
Pc

γ2c

ΩΣc(1)

ΩΣc(2)

The C case.

But in order to have mapping class group invariance persist through the recursion, we will
also need to be able to make sense of the following infinite sum

ΩΣ =
∑

P∈PB (Σ)

Θb′ (B
b,ΩΣc ) +

∑
P∈PC (Σ)

Θb,b′ (C ,ΩΣc ).

where PB(Σ) and PC (Σ) are the sets of isotopy classes of embeddings of pair of pants into
Σ of type B and C respectively and ∂+P = b ∪ b′.



Admissible initial data

Definition

Initial data for a given target theory E are assignments

• A,C ∈ E(P)ΓP .

• Bb ∈ E(P) for b ∈ π0(∂+P) such that ϕ(Bb) = Bϕ(b) for all ϕ ∈ Γ(P).

• D ∈ E(T )ΓT .

Definition

The initial data is called admissible if A,B,C ,D satisfies certain decay properties.
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The recursion and the main existence theorem

Let (A,B,C ,D) be an admissible initial data for a target theory E.

Definition

• Ω∅ := 1 ∈ E(∅) = K, • ΩP := A, • ΩT := D.

For Σ a connected object of S with Euler characteristic χ(Σ) ≤ −2 we seek to inductively
define

• ΩΣ := 1
2

∑
P∈PC (Σ)

Θb,b′ (C ,ΩΣc ) +
∑

P∈PB (Σ)

Θb′ (B
b
Pc
,ΩΣc )

as an element of E(Σ).
For disconnected objects Σ, we declare

ΩΣ :=
⊔

a∈π0(Σ)

ΩΣ(a).

Theorem (Andersen, Borot and Orantin)

The assignment Σ 7→ ΩΣ is well-defined. More precisely, the above series defining ΩΣ

converges absolutely for any of the seminorms of E(Σ), and it is functorial. In particular,

ΩΣ ∈ E(Σ)ΓΣ .



Idea of the proof

• Recall that SΣ is Thurston’s set of multi curves on Σ.

• The basic idea is to consider functions

l : SΣ → R+

for which there exists cΣ, dΣ ∈ R+ such that

#{γ ∈ SΣ|l(γ) < L} ≤ cΣL
dΣ ∀L ∈ R+.

• The sets of pair of pants PB(Σ) are really just subsets of SΣ and we see that

ζB(s) =
∑

P∈PB (Σ)

l(P)−s

are well defined functions for s > dΣ + 1.

• If we now assume that for each P ∈ PB(Σ) we have the esimate∣∣Θb′ (B
b
Pc
,ΩΣc )

∣∣ ≤ C
∣∣ΩΣc

∣∣l(P)−(dΣ+2)

then we get that ∑
P∈PB (Σ)

∣∣Θb′ (B
b
Pc
,ΩΣc )

∣∣ ≤ C
∣∣ΩΣc

∣∣ ζB(dΣ + 2) .

Same argument of course works for PC (Σ).



Topological Recursion, Quantum Airy structures and Geometric Recursion

Topological Recursion
Invented by Chekhov, Eynard, Orantin around 2005-07 and written down by Eynard
and Orantin.
Takes as its input a spectral curve together with a certain one form and two form on a
two fold product of the spectral curve.
It produces forms index by non-negative integers g and n on products of the spectral
curve, which are defined by a recursion with a structure very reminiscent of the
structure of the irreducible components of the boundary divisor of Mg,n’s.

Quantum Airy structures
Invented by Kontevich and Soibelman in 2016-17.
Takes as input four (maybe infinite) tensors A,B,C ,D which is the data needed to
specify and quantize a certain quadratic Lagrangian.
For any initial data for TR one can construct an A,B,C ,D which gives a Quantum
Airy structure and the output of TR becomes incoded in Kontsevich and Soibelmans
general construction of the quantization of the quadratic Lagrangian.

Geometric Recursion
We (Andersen, Borot, Orantin) invented it gradually during the period 2015-18.
Our first version of Geometric Recursion was based on the spectral curve technology.
The A,B,C ,D formalism presented above was inspired by Kontsevich and Soibelmans
reformulation of TR and simplified our constructions considerably.
GR is rather different in the sense that it involves something functorially defined on
surfaces which do have a genus g and a number of boundary components n.
As we will see below, for certain target theories, GR can be mapped to TR and it is a
means to establish that something can be computed by means of TR.
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The target theory of continous functions on Teichmüller space

Let Σ be an object of S, e.g. Σ is a pointed bordered surface, so we have marked points
on the boundary o = (ob)b∈π0(∂Σ).

Definition

The Teichmüller space T p
Σ for a pointed bordered surface Σ is

{µ : Σ→ S | S bordered Riemann Surface}/ ∼

Here (µ1 : Σ→ S1) ∼ (µ2 : Σ→ S2) iff there exist Φ : S1 → S2 biholomorphism s.t.
µ−12 ◦ Φ ◦ µ1 restricts to the identity on o and is isotopic to IdΣ via diffeomorphism which
also restrict to the identity on o.

The canonical projection
pΣ : T p

Σ −→ TΣ,

is an Rπ0(∂Σ)-bundle.
The group ∆Σ generated by boundary parallel Dehn twist acts free on T p

Σ and we denote
T̃ p

Σ := T p
Σ /∆Σ. Then the induced projection

p̃Σ : T̃ p
Σ −→ TΣ

is a U(1)π0(Σ)-bundle.



The target theory of continous functions on Teichmüller space

For our pair of pants P, we get a canonical identification

TP ∼= R3
+

and isomorphism
T p
P
∼= (R+ × R)3, T̃ p

P
∼= (R+ × U(1))3 .

We denote by (Li , θi )
3
i=1 the resulting coordinates on T̃ p

P .

For Σi objects of S and β ⊂ π0(∂+Σ1)× π0(∂−Σ2) we obtain by gluing a new object
Σ1 ∪β Σ2.
We have the following inclusion map

ιb : T̃ p,=β
Σ1∪Σ2

→ T̃ p
Σ1∪Σ2

where T̃ p,=β
Σ1∪Σ2

is the subset of T̃ p
Σ1∪Σ2

where the length of the glued boundary components

match. Then we have a U(1)|β|-fibration

ϑ̃β : T̃ p,=β
Σ1∪Σ2

/∆β → T̃ p
Σ1∪βΣ2

obtained by glueing.
Here ∆β is the group generated by pairs of opposite Dehn-twist along each boundary pair
of β, which cancel after glueing.
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The target theory of continuous functions on Teichmüller space

Union morphisms

As union morphism, we take t : E(Σ1)× E(Σ2)→ E(Σ1 ∪ Σ2) given by
f1 t f2 = q∗1 f1 · q∗2 f2, where qi : E(Σ1 ∪ Σ2)→ E(Σi ) are the projections.

Glueing morphisms

For (f1, f2) ∈ E(Σ1)× E(Σ2) we define

Θb(f1, f2)(σ) :=

∫
ϑ̃−1
γ (σ)

ι∗b (f1 t f2) dα.

where dα is the rotation invariant measure on the fibers of ϑ̃γ .

Initial data

• A,C ∈ C0(T̃ p
P )ΓP ∼= C0((R+ × U(1))×3)S2

• Bb,Bb′ ∈ C0(T̃ p
P ) ∼= C0((R+ × U(1))×3) (Bb′ is Bb with last two coordinates permuted.)

• D ∈ C0(T̃ p
T )ΓT

Admissibility: For all s, ε > 0 there exist M(s, ε) s.t.

sup
σ∈KP (ε)

(1 + [lσ(∂+P)− lσ(∂−P)]+)s
∣∣Bb(σ)

∣∣ ≤ M(s, ε)

sup
σ∈KP (ε)

(1 + [lσ(∂+P)− lσ(∂−P)]+)s
∣∣C(σ)

∣∣ ≤ M(s, ε) .

Here KΣ(ε) :=
{
σ ∈ T̃ p

Σ | sysσ ≥ ε
}
and

(
[x]+ = 1+Sign(x)

2 x
)



Mirzakhani-McShane initial data for E(Σ) = C0(T̃ p
Σ)

Consider the Mirzakhani-McShane initial data:

AMM(L1, L2, L3) = 1

BMM(L1, L2, `) = 1− 1
L1

ln

(
cosh

(
L2
2

)
+cosh

(
L1+`
2

)
cosh

(
L2
2

)
+cosh

(
L1−`

2

)
)

CMM(L1, `, `′) = 1
L1

ln
(

exp(
L1
2 )+exp( `+`′

2 )

exp(− L1
2 )+exp( `+`′

2 )

)
and

DMM(σ) =
∑
γ∈ST

CMM(`σ(∂T ), `σ(γ), `σ(γ))

for σ ∈ T̃ p
T .

Theorem (Andersen, Borot and Orantin)

For any object Σ in S the Geometric Recursion applied to the initial data
AMM,BMM,CMM,DMM for the target theory E(Σ) = C0(T̃ p

Σ) gives

ΩΣ = 1.



Kontsevich Initial data

Consider the Kontsevich initial data:

AK(L1, L2, L3) = 1
BK(L1, L2, `) = 1

2L1

(
[L1 − L2 − `]+ − [−L1 + L2 − `]+ + [L1 + L2 − `]+

)
CK(L1, `, `′) = 1

L1
[L1 − `− `′]+

and
DK(σ) =

∑
γ∈ST

CK(`σ(∂T ), `σ(γ), `σ(γ))

for σ ∈ T̃ p
T .

Theorem (Andersen, Borot and Orantin)

For any object Σ in S the Geometric Recursion applied to the initial data AK,BK,CK,DK
for the target theory E(Σ) = C0(T̃ p

Σ) gives

ΩK
Σ ∈ C0(MΣ)

which is integrable overMΣ(L1, . . . , Ln) w.r.t. νΣ(L1, . . . , Ln) and∫
MΣ(L1,...,Ln)

ΩK
Σ νΣ(L1, . . . , Ln) =

∫
Mg,n

exp
( n∑

i=1

L2i
2
ψi

)
,

where
• νΣ(L1, . . . , Ln) Weil-Petersson volume form onMΣ(L1, . . . , Ln)
• ψi are the Psi-classes ofMg,n and g is the genus of Σ.



Sums over multicurves

Let f : R+ → C be a continuous function. For any object Σ of S we consider the series

FΣ(σ) =
∑
γ∈SΣ

∏
c∈π0(γ)

f (`σ(γc ))

where SΣ is the set multi-curves on Σ.

Let us denote
sf := inf

{
s ∈ R+

∣∣ ∀ε > 0, sup
`≥ε

`s |f (`)| < +∞
}

If Σ is a connected bordered surface with genus g and n boundary components such that
6g − 6 + 2n < sf , then

FΣ(σ) =
∑
γ∈SΣ

∏
c∈π0(γ)

f (`σ(γc ))

is absolutely convergent and defines a continuous function of σ ∈ TΣ. Since ΓΣ acts by
permutations on SΣ, this function is ΓΣ-invariant
This function is obviously multiplicative for disjoint unions

FΣ1tΣ2 = FΣ1FΣ2 .

We observe that for a pair of pants P we have that FP = 1.



f -twisted Mirzakhani-McShane initial data for E(Σ) = C0(T̃ p
Σ)

f -twisted Mirzakhani-McShane initial data:

B f
MM(L1, L2, `) = BMM(L1, L2, `) + f (`)

C f
MM(L1, `, `

′) = CMM(L1, `, `
′) + BMM(L1, `, `

′)f (`) + BMM(L1, `
′, `)f (`′) + f (`)f (`′).

Af
MM = 1, D f

MM(σ) = 1 +
∑
γ∈ST

f (`σ(γ)),

Theorem (Andersen, Borot and Orantin)

For any object Σ in S the Geometric Recursion applied to the initial data
Af
MM,B

f
MM,C

f
MM,D

f
MM for the target theory E(Σ) = C0(T̃ p

Σ) gives

ΩΣ = FΣ.

Main idea of the proof is that for a given γ ∈ SΣ, there always exist a pair of pants in Σ
around ∂−Σ, which does not intersect γ.
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Recursion for expectation values of functions constructed by GR

If Φ ∈ C0(TΣ)ΓΣ is integrable with respect to the Weil-Petersson volume form νΣ, we
define the expectation value

〈Φ〉(L1, . . . , Ln) =

∫
MΣg,n (L1,...,Ln)

Φ dνΣ

Theorem (Andersen, Borot and Orantin)

〈FΣg,n 〉(L1, . . . , Ln) =

n∑
m=2

∫
R+

B f (L1, Lm, `) 〈FΣg,n−1 〉(`, L2, . . . , L̂m, . . . , Ln)` d`

+ 1
2

∫
R2

+

C f (L1, `, `
′)

(
〈FΣg−1,n+1 〉(`, `

′, L2, . . . , Ln)

+
∑

g1+g2=g
J1tJ2={L2,...,Ln}

〈FΣg1,1+|J1|
〉(`, `J1 )〈FΣg2,1+|J2|

〉(`′, `J2 )

)
` `′ d` d`′

and

〈FP〉(L1, L2, L3) = 1, 〈FT 〉(L) =
π2

6
+

L2

24
+

1
2

∫
R+

f (`)` d`.



Consider the topological recursion of Chekhov, Eynard and Orantin which given a spectral
curve

(x : X→ X0, ω0,1, ω0,2)

produces

• ωg,n index by g ≥ 0 and n ≥ 1, which are denoted the TR amplitudes.

Theorem (Andersen, Borot and Orantin)

Let (x : X→ X0, ω0,1, ω0,2) be a spectral curve and ωg,n the TR amplitudes.

Let r be the set of ramifications points of x . For r ∈ r, we introduce local coordinates near
r ∈ X and x(r) ∈ X0 such that x(z) = z2/2 + cr . Let V be the free C-vector space on the
set r.

There exists a family of admissible initial data, parametrized by β ∈ R+, for the geometric
recursion valued in E(Σ) = C 0(TΣ,V

⊗π0(∂Σ)) for which the GR amplitudes ΩβΣ are
integrable onMΣ(L) with respect to the νΣ,L for any L ∈ R+, and with the property that

Resz′1→r1
· · ·Resz′n→rn

ωg,n(z ′1, . . . , z
′
n)∏n

i=1(zi − z ′i ) dzi
= lim
β→∞

(∫
Rn

+

n∏
i=1

dLi Li e
−ziLi

∫
MΣg,n,L

ΩβΣ νΣ,L

)



Theorem (Andersen, Borot and Orantin)

(A,B,C ,D) initial data satisfying the admissibility conditions with constants M(s, ε)
independent of ε > 0, and let Ω be the corresponding GR amplitudes. Then the restriction
of ΩΣ toMΣ(L) for fixed L ∈ Rπ0(∂Σ)

+ is integrable with respect to νΣ,L. For Σg,n

connected with genus g and n boundary components set

Wg,n(L) :=

∫
MΣg,n (L)

ΩΣg,n νΣg,n,L

These functions satisfies topological recursion: First

W0,3 = A, W1,1(L) =

∫
MT (L)

ΩT νT ,L.

For any 2g − 2 + n ≥ 2 and L ∈ Rn−1
+ (W0,1 = 0 and W0,2 = 0 by convention)

Wg,n(L1, L) =
n∑

m=2

∫
R+

`B(L1, Lm, `)Wg,n−1(`, L \ {Lm})d`

+
1
2

∫
R2

+

` `′ C(L1, `, `
′)

(
Wg−1,n+1(`, `′, L) +

∑
h+h′=g
J1∪̇J2=L

Wh,1+|J|(`, J)Wh′,1+|J′|(`
′, J′)

)
d`d`′



The Weil-Petersson symplectic form on Teichmüller space

Recall
• T̃ p

P
∼= (R+ × U(1))×3 with coordinates (L1,Θ1, L2,Θ2, L3,Θ3)

• T̃ p
T
∼= (R+ × U(1))× (R+ × R) with Frensel-Nielsen coordinates (L,Θ, `, ϕ).

Now consider the target theory E(Σ) = Ω∗(T̃ p
Σ ).

Initial data:

AWP = exp∧

( 3∑
i=1

dΘi ∧ dLi

)

BWP = BMM(L1, L2, L3) exp∧

( 2∑
i=1

dΘi ∧ dLi

)
∧ d

(
Θ3

L3

)

CWP = CMM(L1, L2, L3) exp∧ (dΘ1 ∧ dL1) ∧ d

(
Θ2

L2

)
∧ d

(
Θ3

L3

)
DWP = exp∧ (dΘ ∧ dL + dϕ ∧ d`)

Theorem (Andersen, Borot and Orantin)

For any object Σ in S the Geometric Recursion applied to the initial data
AWP,BWP,CWP,DWP for the target theory E(Σ) = Ω∗(T̃ p

Σ ) gives

ΩΣ = exp(ωWP).



Masur-Veech Volumes

This part is joint with Borot, Charbonnier, Delecroix, Giacchetto, Lewański and Wheeler.

• Consider the bundle of quadratic differentials QTΣ over TΣ.

• We have the natural norm | · | on QTΣ given by

|q| =

∫
Σ
|q ∧ q̄|1/2

• There are local holonomy coordinates on QTΣ which specifies a lattice subbundle in QTΣ.

• The Masur–Veech measure µMV on QTΣ is defined from this structure by lattice point
counting, normalized such that the co-volume of the lattice is one.

• For Y a measurable subset of the unit norm quadratic differentials Q1TΣ set

µ1MV(Y ) = (12g − 12 + 4n)µMV(Ỹ ), Ỹ = {tq|t ∈ (0, 12 ) and q ∈ Y }

• This measure is clearly ΓΣ invariant.

• The Masur–Veech volume is by definition the total mass

MVg,n = µ1MV(Q1Mg,n) <∞.



Masur-Veech Volumes

Consider the smooth function f : R+ → R given by

f (l) =
1

e l + 1
.

Let Af
K,B

f
K,C

f
K,D

f
K be the f twisted Kontsevich initial data and let ΩMV

Σ ∈ C0(TΣ) be the
geometric recursion amplitudes obtained from this initial data.

Then ΩMV
Σ is integrable overMΣ(L1, . . . , Ln) w.r.t. the WP-volume form νΣ,L and we

recall our notation

〈ΩMV
Σ 〉(L1, . . . , Ln) =

∫
MΣ(L1,...,Ln)

ΩMV
g,n νΣ,L.

Theorem

〈ΩMV
g,n 〉(L1, . . . , Ln) = 〈ΩMV

Σg,n
〉(L1, . . . , Ln) is a polynomial in the L′i s and

MVg,n =
24g−2+n(4g − 4 + n)!

(6g − 7 + 2n)!
〈ΩMV

g,n 〉(0, . . . , 0).

We call 〈ΩMV
g,n 〉(L1, . . . , Ln) the Masur-Veech polynomials.



Masur-Veech Volumes

Theorem

〈ΩMV
g,n 〉(L1, . . . , Ln) =

∑
d1,...,dn≥0

d1+···+dn≤3g−3+n

Fg,n[d1, . . . , dn]
n∏

j=1

L
2dj
j

(2dj + 1)!
.

F0,1[d1] = F0,2[d1, d2] = 0, F0,3[d1, d2, d3] = δd1,d2,d3,0, F1,1[d ] = δd,0
ζ(2)

2
+ δd,1

1
8

Fg,n[d1, . . . , dn] =
n∑

m=2

∑
a≥0

Bd1
dm,a

Fg,n−1[a, d2, . . . , d̂m, . . . , dn] +

+
1
2

∑
a,b≥0

Cd1
a,b

(
Fg−1,n+1[a, b, d2, . . . , dn]

+
∑

h+h′=g
JtJ′={d2,...,dn}

Fh,1+|J|[a, J]Fh′,1+|J′|[b, J
′]

)
,

B i
j,k = (2j + 1) δi+j,k+1 + δi,j,0 ζ(2k + 2),

C i
j,k = δi,j+k+2 + (2j+2a+1)!ζ(2j+2a+2)

(2j+1)!(2a)! δi+a,k+1

+ (2k+2a+1)!ζ(2k+2a+2)
(2k+1)!(2a)! δi+a,j+1 + ζ(2j + 2)ζ(2k + 2)δi,0.



Masur-Veech Volumes

Theorem

For surfaces of genus g with n > 0 boundaries, the Masur–Veech volumes are

MVg,n =
24g−4+n(4g − 4 + n)!

(6g − 7 + 2n)!
Fg,n[0, . . . , 0],

while for closed surfaces of genus g ≥ 2 they are obtained through

MVg,0 =
24g−2(4g − 4)!

(6g − 6)!
Fg,1[1].



Future perspectives

The following is my own view on and preliminary results concerning the future perspectives
of geometric recursion.



Closed String Field Theory (SFT)

Recall B. Zwiebach’s formulation of closed String Field Theory.
Part of this theory is the vertex Hilbert space V of the theory with its inner product 〈·, ·〉.
The theory provides brackets for all g ≥ 0, n ≥ 0 and any sufficiently small ε ∈ R+

[·, . . . , ·]εg,n : V×n → V ,

which satisfies the quantum master equation (QME) in SFT.
These brackets are determined by the associated multi-pairings

{·, . . . , ·}εg,n : V×n → C

by the formula
{v1, . . . , vn}εg,n = 〈v1, [v2, . . . , vn]εg,n−1〉

v1, . . . , vn ∈ V .
These multi-pairings are given by the following expression (for certain top forms
ωg,n(v1, . . . , vn))

{v1, . . . , vn}εg,n =

∫
V εg,n

ωg,n(v1, . . . , vn),

where V εg,n is a certain subset of Mg,n which should satisfy the following version of the
QME:

∂V εg,n
∼=

 ⊔
g1+g2=g,n1+n2=n+2,ni≥1

V εg1,n1 × V εg2,n2

⊔V εg−1,n+2



Closed String Field Theory (SFT)

We consider the follow function ft,ε : R+ → R given by

ft,ε(l) =

{
t l ∈ [0, ε)
0 l ∈ [ε,∞)

We will further require that ε < argsinh(1).
We now consider the following initial data A

ft,ε
MM ,B

ft,ε
MM ,C

ft,ε
MM ,D

ft,ε
MM and let

Ωε,tΣ ∈M(TΣ)

be the result of the geometric recursion applied to this initial data.
For each σ ∈ TΣ we denote by nε(σ) the number of simple closed geodesics of length
shorter than ε.

Theorem

For all σ ∈ TΣ we have that
Ωε,tΣ (σ) = (1 + t)nε(σ).

Thus, if we let Ωεg,n = Ωε,−1g,n , we get that

Ωεg,n is the indicator function for the subset Ṽ εg,n.

where

Ṽ εg,n = {[σ] ∈Mg,n | all simple interior closed geodesics on [σ] have length at least ε}



Closed String Field Theory (SFT)

Let
V εg,n = Ṽ εg,n ∩Mg,n(ε, . . . , ε).

Theorem

The subsets V εg,n satisfies the quantum master equation

∂V εg,n
∼=

 ⊔
g1+g2=g,n1+n2=n+2,ni≥1

V εg1,n1 × V εg2,n2

⊔V εg−1,n+2

Since Ωεg,n is the indicator function of Ṽ εg,n we of course have that∫
V εg,n

ωg,n(v1, . . . , vn) =

∫
Mg,n(ε,...,ε)

Ωεg,nωg,n(v1, . . . , vn).

It is likely that we can further build Ωεg,nωg,n(v1, . . . , vn) via geometric recursion (since
ωg,n(v1, . . . , vn) is build from the usual conformal field theory constructions which satisfies
factorization) and then we will get that that the string brackets

{v1, . . . , vn}εg,n =

∫
V εg,n

ωg,n(v1, . . . , vn)

can be computed by topological recursion!
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Let
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Other target theories

We are currently working with other candidate target theories:

Functions on Hitchin’s higher Teichmüller components:
One considers Hitchin’s component of the SL(n,R) moduli space and then normalized
logarithms of spectral radius holonomy functions in place of length functions, precisely as
done by M. Bridgeman, R. Canary, F. Labouri & A. Sambarino when they construct the
Pressure Metric on this component.



Functions on Teichmüller space via spectral theory

Ex. 3. Functions on Teichmüller space via spectral theory:

E(Σ) = C0(TΣ), ΩΣ(σ) = Tr(f (−∆σ))

• f : R→ C is sufficiently fast decaying at infinity and ∆σ Dirichlet-Laplace-Beltrami
operator on the Riemann surface Σσ , σ ∈ TΣ.
The Selberg trace formula expresses ΩΣ as sum over geodesics on Σ:

Tr(f (−∆σ)) =
2g + n − 1

2

∫
R
f̃ (p)p tanh(πp)dp

+
∑
γ∈Gp

∞∑
k=1

`σ(γ)

4sinh(k `σ(γ)
2 )

g(k`σ(γ))

−
∑
γ∈G ′p

∞∑
k=1

`σ(γ)

4cosh((k + 1
2 ) `σ(γ)

2 )
g((k +

1
2

)`σ(γ))

−
n∑

i=1

∞∑
k=1

Li

4cosh(k Li
2 )

g(kLi )

−
L

4
g(0),

where GP and G ′P are certain sets of primitive geodesics on Σ,

g(y) =

∫
R
f̃ (x)e ixydx

and f (λ) = f̃ (p), λ = p2 + 1
4 .



Functions on Teichmüller space via spectral theory

However, if one instead consider another category S′ of surfaces:

Objects: Compact oriented surfaces with corners with a marked point on each boundary
(which must be a corner, if the component has corners and we set c(Σ) in total number of
corners and marked points) on the boundary Σ with χ(Σ)− c(Σ) < −1 together with an
orientation of the boundary, such that ∂Σ = ∂−Σ ∪ ∂+Σ, and such that the inclusion map
∂−Σ ⊂ Σ induces π0(∂−Σ) ∼= π0(Σ).

Morphisms: Isotopy classes of orientation preserving diffeomorphisms which preserves
marked points and orientations on the boundary modulo isotopies which also preserves all
this structure.

Suppose now we have a functor

E : S → C.

The recursion now proceeds by iteratively removing embedded triangles from Σ.

A scheme similar to the one presented for Geometric Recursion in this talk also works in
this case and one in facts gets what we call Open Geometric Recursion.

This allows us to get recursion for the spectral functions ΩΣ(σ) = Tr(f (−∆σ)) via the
Selberg trace formula and in fact also get :

A recursion in (g , n, c) for their expectation values: 〈ΩΣg,n,c 〉.

Answers a long standing open problem in spectral theory with application in string theory.
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Further details on the proof of the main existence theorem

The true category C:

Objects: An object V of C is a directed set I and an inverse system over I of objects

(V (i), (| · |(i)α )α∈A (i) )i∈I

of V. Inside the projective limit V of the (V (i))i∈I we have the important subspace
V ′ := {v ∈ V | ∀i ∈ I , ||v ||(i) < +∞} ⊂ V , where ‖v‖(i) := supα∈A (i) |v |(i)α .

Morphisms: A morphism Φ of C from an object V1 to another V2, is an inverse system of
continuous linear maps

Φi,j : V
(i)
1 → V

(j)
2 , i ∈ I1, j ≤ h(i)

over an order preserving map h : I1 → I2, such that the induced continuous linear map
Φ : V1 → V2 satisfies Φ(V ′1) ⊆ V ′2 .



Target theory

Recall SΣ is the set of multi-curves in Σ.

Definition

A (C-valued) target theory is a functor E from S to the category C, such that morphisms in
S are send to isometries in C, together with the following extra structure. For each object
Σ of S with

E(Σ) =
(
E (i)(Σ), (| · |(i)α )

α∈A
(i)
Σ

)
i∈IΣ

,

we require the functorial data of lengths functions

l
(i)
α : SΣ −→ C \ {0}

indexed by i ∈ IΣ and α ∈ A
(i)

Σ . This data must satisfy the following properties.

Polynomial growth axiom.
For each i ∈ IΣ, α ∈ A

(i)
Σ and L ∈ R+, the set

N
(i)
α (Σ, L) =

{
γ ∈ SΣ

∣∣ |l (i)α (γ)| ≤ L
}

is finite and there exists mi (Σ), di (Σ) ∈ R+, such that

sup
α∈A (i)(Σ)

|N(i)
α (Σ, L)| ≤ mi (Σ)Ldi (Σ).
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|N(i)
α (Σ, L)| ≤ mi (Σ)Ldi (Σ).



Target theory

Lower bound axiom.
For any i ∈ IΣ, there exists εi > 0 such that

inf
{
|l (i)α (γ)|

∣∣ (α, γ) ∈ A
(i)

Σ × SΣ

}
≥ εi .

Small pair of pants
For any i ∈ IΣ, there exists Qi > 0, s.t. ∀α ∈ A i

Σ

| {P ∈ P(Σ) | l (i)α (∂(P ∩ Σ◦)) ≤ l
(i)
α (∂Σ ∩ ∂P)} |≤ Qi

Union axiom.
For any two objects Σ1 and Σ2 of S, we ask for a bilinear morphism

t : E(Σ1)× E(Σ2)→ E(Σ1 ∪ Σ2),

compatible with associativity of cartesian products and associativity of unions.

Glueing axiom.
For any two objects Σ1 and Σ2 in S, and a subset β ⊂ π0(∂Σ1)× π0(∂Σ2) consisting of
disjoint pairs. We ask for a bilinear morphism

Θβ : E(Σ1)× E(Σ2)→ E(Σ1 ∪β Σ2),

which is compatible with the glueing of morphisms, with associativity of glueings and with
the union morphisms.



Admissible initial data

Definition

Initial data for a given target theory E are assignments

• A,C ∈ E(P)ΓP .

• Bb ∈ E(P) for b ∈ π0(∂+P) such that ϕ(Bb) = Bϕ(b) for all ϕ ∈ Γ(P).

• D ∈ E(T )ΓT .

Definition

The initial data is called admissible if
• A ∈ E ′(P), D ∈ E ′(T )

and
(

[x]+ = 1+Sign(x)
2 x

)
Decay axiom. For any connected object Σ in S, any P ∈ P(Σ), we require that for any
(i , j) ∈ IP ×IΣc and k ∈ IΣ such that k ≤ hP(i , j), any α ∈ A

(k)
Σ , there exists

sk > dk (Σ) and functorial Mi,j,k (Σ) > 0 such that

• if P shares two boundary components with Σ, say ∂−P and b, then ∀v ∈ E ′(Σc )Γ(Σc )

∣∣Θi,j,k
b′ (Bb, v)

∣∣(k)

α
≤ Mi,j,k (Σ) ‖v‖(j) (1 + [l

(i)
α (∂P ∩ Σ◦)− l

(i)
α (∂P ∩ ∂Σ)]+)−sk .

• if P shares only one boundary component with Σ, then ∀v ∈ E ′(Σc )Γ(Σc )

∣∣Θi,j,k
b,b′ (C, v)

∣∣(k)

α
≤ Mi,j,k (Σ) ‖v‖(j)(1 + [l

(i)
α (∂P ∩ Σ◦)− l

(i)
α (∂P ∩ ∂Σ)]+)−sk .
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• A,C ∈ E(P)ΓP .

• Bb ∈ E(P) for b ∈ π0(∂+P) such that ϕ(Bb) = Bϕ(b) for all ϕ ∈ Γ(P).

• D ∈ E(T )ΓT .

Definition

The initial data is called admissible if
• A ∈ E ′(P), D ∈ E ′(T )

and
(

[x]+ = 1+Sign(x)
2 x

)
Decay axiom. For any connected object Σ in S, any P ∈ P(Σ), we require that for any
(i , j) ∈ IP ×IΣc and k ∈ IΣ such that k ≤ hP(i , j), any α ∈ A

(k)
Σ , there exists

sk > dk (Σ) and functorial Mi,j,k (Σ) > 0 such that

• if P shares two boundary components with Σ, say ∂−P and b, then ∀v ∈ E ′(Σc )Γ(Σc )

∣∣Θi,j,k
b′ (Bb, v)

∣∣(k)

α
≤ Mi,j,k (Σ) ‖v‖(j) (1 + [l

(i)
α (∂P ∩ Σ◦)− l

(i)
α (∂P ∩ ∂Σ)]+)−sk .

• if P shares only one boundary component with Σ, then ∀v ∈ E ′(Σc )Γ(Σc )

∣∣Θi,j,k
b,b′ (C, v)

∣∣(k)

α
≤ Mi,j,k (Σ) ‖v‖(j)(1 + [l

(i)
α (∂P ∩ Σ◦)− l

(i)
α (∂P ∩ ∂Σ)]+)−sk .



A remark on the proof of the main existence theorem

The decay axiom: ∀s > 0, any (i , j) ∈ IP ×IΣc and k ∈ IΣ, any α ∈ A
(k)

Σ that∑
P∈PB (Σ)

∣∣Θi,j,k
b′ (Bb,ΩΣc )

∣∣(k)

α
≤ Mi,j,k (Σ)‖ΩΣc ‖

(j) ζα(s) ,

where

ζ
(i)
α (s) =

∑
P∈PB (Σ)

(1 + [l
(i)
α (∂P ∩ Σ◦)− l

(i)
α (∂P ∩ ∂Σ)]+)−s ∈ (0,+∞] .

The polynomial growth axiom + small pair of pants: There exist sk > dk (Σ) such that
ζα(sk ) is finite.

The lower bound axiom + small pair of pants: There exists a finite constant M′k such that

sup
α∈A

(k)
Σ

ζ
(i)
α (sk ) ≤ M′k .

Thus we get that ∑
P∈PB (Σ)

∣∣Θi,j,k
b′ (Bb,ΩΣc )

∣∣(k)

α
≤ Mi,j,k (Σ) ‖ΩΣc ‖

(j) M′k ,

e.g. the series
∑

P∈PB (Σ) Θi,j,k
b′ (Bb,ΩΣc ) is absolutely convergent in E (k)(Σ).



The target theory of continuous functions on Teichmüller space

Let KΣ(ε) :=
{
σ ∈ T̃ p

Σ | sysσ ≥ ε
}
and Eε(Σ) := C0(KΣ(ε)).

We have a family of seminorms indexed by the set A ε
Σ of compact subsets of KΣ(ε), which

makes it a locally convex, Hausdorff, complete topological vector spaces, and we have
continuous restriction maps Eε(Σ)→ Eε

′
(Σ) whenever ε ≤ ε′.

One then easily checks that E(Σ) := C0(T̃ p
Σ ) is the projective limit of these spaces over the

directed set R+.
We have seminorms

‖f ‖ε = sup
σ∈KΣ(ε)

|f (σ)|

and a subspace
E ′(Σ) =

{
f ∈ C0(T̃Σ) | ∀ε > 0, ‖f ‖ε < +∞

}
.

For any ε > 0 and K a compact subset of KΣ(ε), we use the hyperbolic length `σ to define
the length functions,

∀γ ∈ SΣ, l
(ε)
K (γ) = min

σ∈K
`σ(γ).

Since K is compact for any σ ∈ K , there exists a constant cK ∈ (0, 1) such that

cK `σ(γ) ≤ l
(ε)
K (γ).

As the systole is bounded below by construction on each KΣ(ε), we deduce that the length
functions satisfy the Lower bound axiom.

A result of Rivin (refined by Mirzakhani) guarantees that the number of γ ∈ SΣ with
l
(ε)
K (γ) ≤ L grows slower than a power of L, thus we get the Polynomial growth axiom.
Work of Hugo Parlier provides the Small pair of pants axiom.



Congratulations!

Congratulations with your
creations of the

IMSA!


